
Interactive Policy Shaping for Human-Robot Collaboration with
Transparent Matrix Overlays

Jake Brawer

Yale University

jake.brawer@yale.edu

Debasmita Ghose

Yale University

debasmita.ghose@yale.edu

Kate Candon

Yale University

kate.candon@yale.edu

Meiying Qin

Yale University

meiying.qin@yale.edu

Alessandro Roncone

University of Colorado Boulder

alessandro.roncone@colorado.edu

Marynel Vázquez

Yale University

marynel.vazquez@yale.edu

Brian Scassellati

Yale University

brian.scassellati@yale.edu

ABSTRACT
One important aspect of effective human–robot collaborations is

the ability for robots to adapt quickly to the needs of humans. While

techniques like deep reinforcement learning have demonstrated

success as sophisticated tools for learning robot policies, the fluency

of human-robot collaborations is often limited by these policies’

inability to integrate changes to a user’s preferences for the task. To

address these shortcomings, we propose a novel approach that can

modify learned policies at execution time via symbolic if-this-then-

that rules corresponding to a modular and superimposable set of

low-level constraints on the robot’s policy. These rules, which we

call Transparent Matrix Overlays, function not only as succinct and

explainable descriptions of the robot’s current strategy but also as

an interface bywhich a human collaborator can easily alter a robot’s

policy via verbal commands. We demonstrate the efficacy of this

approach on a series of proof-of-concept cooking tasks performed

in simulation and on a physical robot.

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing systems and tools.

KEYWORDS
human-robot collaboration, symbolic reasoning, reinforcement learn-

ing, interactive robot learning

ACM Reference Format:
Jake Brawer, Debasmita Ghose, Kate Candon, Meiying Qin, Alessandro

Roncone, Marynel Vázquez, and Brian Scassellati. 2023. Interactive Policy

Shaping for Human-Robot Collaboration with Transparent Matrix Overlays.

In Proceedings of the 2023 ACM/IEEE International Conference on Human-
Robot Interaction (HRI ’23), March 13–16, 2023, Stockholm, Sweden. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3568162.3576983

This work is licensed under a Creative Commons Attribution

International 4.0 License.

HRI ’23, March 13–16, 2023, Stockholm, Sweden
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9964-7/23/03.

https://doi.org/10.1145/3568162.3576983

1 INTRODUCTION
Human-robot collaboration (HRC) is a domain concerned with

leveraging the strengths of humans and robots in order to complete

joint tasks. As these robots are typically supportive, HRC-centric

learning approaches emphasize the ability not just to learn task-

oriented policies but to do so in a way that reflects the collaborator’s

preferences for how the task should be completed [27, 28, 36, 49,

51]. However, to be truly effective collaborators, these systems

should not only learn preferences over time but adapt to them

in-the-moment based on naturalistic human cues, which may be

linguistic [8, 19, 20, 35, 41], implicit [12, 30, 31, 53], multi-modal

[9, 37, 45], and contextual [8, 24]. At a minimum, this means that a

robot should be able to quickly adapt a learned policy to directives

delivered via natural language utterances, contending with the

possibility that such directives may be high-level, imprecise [2], or

subject to amendments over the course of an interaction. To this

end, we propose an approach that can interactively shape a robot’s

policy to conform to a set of high-level user-provided directives at

execution time.

Typical approaches that utilize high-level user-provided direc-

tives to learn robot policies fall under the area of reinforcement

learning (RL) with human advice [28, 33, 51]. These approaches seek

to incorporate human-specified teaching signals into the learning

process, either to speed it up or avoid unsafe behaviors. This is usu-

ally accomplished by modifying the rewards received by the agent

to reflect these signals during training or by biasing the agent’s

exploration strategy or learning process directly. The latter set of

approaches, which in recent years has been referred to as action

shielding [5, 15, 22, 23, 26, 32], are particularly relevant as they

provide methods for restricting an agent’s actions or providing par-

ticular action alternatives, essentially acting as immediate policy

overrides conditional on some user-provided specification.

Nevertheless, as these approaches are designed to shape a pol-

icy during training, or retraining, they typically make a number

of assumptions that make their application to the execution-time

HRC contexts challenging. For example, one approach [47] defines

three distinct shields designed to enable users to provide feedback

to an agent in order to repair a failed policy. However, these shields

require a user to preempt these undesired future states, which

https://doi.org/10.1145/3568162.3576983
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3568162.3576983

HRI ’23, March 13–16, 2023, Stockholm, Sweden Jake Brawer et al.

Figure 1: Transparent Matrix Overlays overview. Here the user prepares breakfast with a robot equipped with a base policy
trained offline. The grids represent a Q-value matrix with high-value state-action pairs in orange. The user expresses their
meal preference by providing a high-level directive “let’s make something healthy” (top panel), producing the first overlay
(green) on the base policy. This leads the robot to consider and manipulate only "healthy" breakfast ingredients (strawberries,
bananas, blueberries, eggs) while eschewing unhealthy ones (chocolate chips, pie). Later, the user modifies their preference by
providing another directive “Don’t use any dairy” (bottom panel). This applies the second overlay (red) over the base policy
and the existing overlay, leading the robot to replace the "dairy" ingredient (milk) with a "non-dairy" ingredient (water). For
simplicity, overlays are represented as a contiguous region, though in practice, contiguity is not required.

requires the robot have access to a state transition function, an as-

sumption broken by most non-trivial applications. Moreover, these

shields were designed only to provide targeted feedback to select

portions of a policy. Ideally, though, a collaborative robot should

also be capable of integrating higher-level directives that apply

across the interaction (e.g. the directive “let’s make a healthy break-
fast” issued to an assistive cooking robot) and that may amend or

interact with other directives (e.g. “and you should handle the main
course”). Therefore we present a novel interactive policy shaping

approach we call the Transparent Matrix Overlay system that can

extract and utilize symbolic rules from user-provided directives.

The overlay rules act as mutable and composable high-level con-

straints on the robot’s policy, allowing a user to quickly influence

a robot’s policy in a naturalistic way without permanently altering

it. The contributions of this paper are three-fold:

(1) We describe a novel policy-shaping approach which we call

Transparent Matrix Overlays (see Fig. 1 for an overview).

(2) We show that our approach results in fewer user-provided cor-

rections to the robot’s behavior when compared to an action-

shielding approach [47] in a simulated cooking task.

(3) We demonstrate this system on a real robot performing a col-

laborative cooking task in three proof-of-concept case studies,

highlighting our approach’s ability to alter a robot’s behavior

with high-level user-provided directives at execution time.

Code and videos available at https://sites.google.com/view/transparent-

matrix-overlays/home

2 RELATEDWORK
In an HRC context the ability for a user to both understand a robot’s

decision making process, as well as influence it, is critical. Below

we describe research seeking to provide users more control over

the robot learning process and make learning more transparent.

2.1 Robots Learning from Human Preferences
A growing area of research focuses on robots learning from human

preferences [18, 24, 27, 28, 36, 49, 51]. Typical preference learning

techniques query a human demonstrator to make a preference-

based judgement between two candidate trajectories or actions[3,

4, 6, 27, 28, 36, 50], though they can also be inferred from user

behavior [13]. From these selections, the system approximates a

reward function using deep neural networks consistent with the

expressed preferences [11]. Ibarz et al. [21] extended these common

preference learning techniques by introducing additional forms

of feedback such as user demonstrations. Recently, Lee et al. [27]

proposed PEBBLE, which is a feedback-efficient RL algorithm that

utilizes off-policy learning and pre-training to reduce the amount

of preferential feedback the user has to provide to train the robot.

Inherent to all reward-shaping approaches mentioned above is the

need to retrain a policy for the new preference to be learned. How-

ever, these approaches do not account for the fact that changes in

preferences, while potentially drastic, may be transient and thus

not reflective of a user’s long-term preferences. Therefore, perma-

nently altering the policy to reflect these changes may not always

be desirable. In contrast, while overlays can be used to aid in the

Interactive Policy Shaping for Human-Robot Collaboration with Transparent Matrix Overlays HRI ’23, March 13–16, 2023, Stockholm, Sweden

retraining of a policy (see. Sec. 5.1), they shape a policy at the level

of the policy itself, meaning their effects are immediate and tempo-

rary. Thus, the proposed approach may be more practical in HRC

contexts where such immediate behavioral adaptation is preferred.

2.2 Constrained Reinforcement Learning
Constrained RL (CRL) seeks to incorporate inductive biases encoded

in the form of logical rules into the RL learning process. These

biases can manifest in a variety of ways, including constraints on an

agent’s state and action or as augmentations to the reward function

[1, 14, 44, 52]. Shielded RL [5, 15, 22, 23, 26, 32, 47] or Shielding is an

instance of CRL that utilizes user-specified policy overrides called

shields to restrict parts of the action space conditional on certain

states or actions. Therefore, these techniques minimally interfere

with the RL model while still enforcing the desired behaviors.

Typically, Shielded RL techniques have been used to enforce

safety constraints during the learning process, or deployment of

a policy [14]. Closest to our work is the Shielded RL approach

presented by van Waveren et al. [47], which demonstrated great

promise as an intuitive and powerful interface for repairing policies

that lead to failure states at execution time. In contrast, rather

than making targeted corrections to sub-optimal policies, our work

enables users to provide high-level directives to a robot in order to

modify its policy to suit the user’s preferences. Moreover, Shielded

RL assumes a dynamics model in order to apply the shields, whereas

our approach makes no such assumption. Nevertheless, in theory,

such an approach could be used to solve the problem of rapidly

modifying an extant robot policy in order to conform to a user’s new

set of preferences. Therefore, we treat van Waveren et al. [47] as

our primary point of comparison in our experimental evaluations.

2.3 Merging Symbolic Reasoning with RL
The push to merge statistical and symbolic approaches has been

gaining traction in ML. Examples include incorporating symbolic

background knowledge into RL systems via inductive logical pro-

gramming [34] and enabling neural networks to reason symboli-

cally [38]. Typical approaches that merge symbolic reasoning with

RL enable Deep RL-derived policies to be expressed using first-order

logic [42], high-level programming languages [43], or by learning

policies in an abstracted form of the underlying state space com-

prised of symbolic rules [7]. Symbolic state abstraction has also

been employed to autonomously generate natural language expla-

nations of learned robot policies [17]. We expand upon this notion

of symbolic state extraction with a succinct and transparent method

for grouping similar low-level states. That is, we recognize that

these abstracted states are not only useful for communicating poli-

cies but also offer an ideal medium by which a human user can

influence a robot’s policy. As a result, our system is better suited for

the HRC domain than non-symbolic approaches, where the ability

of the user to easily and quickly modify the robot’s behavior is key.

Our work falls at the intersection between robots learning from

human preferences and shielded RL by leveraging symbolic reason-

ing. That is, our approach enables a robot to incorporate high-level

user-provided directives as temporary symbolic constraints on its

policy, resulting in behavioral adaptation at execution time reflect-

ing a user’s new preferences.

3 PROPOSED APPROACH
Below we describe the Transparent Matrix Overlay approach (Fig.

1), which enables users to issue high-level directives to a robot

resulting in modifications to its policy at execution time.

3.1 Preliminaries
We model a collaborative task with a modified goal-oriented MDP

[29, 54] formalism (𝑆,𝐴, 𝑅𝜃 ,𝑇 ,G𝜃 , 𝜙𝜃 , where 𝑅𝜃 and G𝜃 denote that

the reward function and the goal respectively parameterized by

a user’s current task preferences 𝜃 . 𝜙𝜃 : 𝑆 → G𝜃 is a tractable

user-specified mapping function that provides a succinct goal rep-

resentation. A robot’s policy for the task denoted by 𝜋𝜃 models the

optimal policy 𝜋∗
𝜃
. We also assume at some future point the exis-

tence of new user preferences for the task, 𝜃 ′, which induce a new

MDP parameterized by 𝜃 ′ and optimal policy 𝜋∗
𝜃 ′
. To produce the

desired behavioral changes in the robot, a user can generate a set

of feedback signals 𝐷𝜃 ′ reflecting their updated preferences, which

include not only reward signals drawn from 𝑅𝜃 ′ but directives such

as action corrections to the policy and high-level instructions for

the task. Thus the agent must generate a new policy 𝜋 ′(𝑎 |𝑠, 𝜋𝜃 , 𝐷𝜃 ′)
utilizing 𝜋𝜃 in tandem with 𝐷𝜃 ′ such that the agreement between

𝜋 ′
𝜃 ′

and 𝜋∗
𝜃 ′

is maximized, whilst minimizing |𝐷𝜃 ′ |. In other words,

this approach aims to modify a robot’s policy to match new users’

preferences using a minimum number of feedback signals.

Under this paradigm, simply retraining a policy using these sig-

nals is insufficient as such an approach leverages only the subset

of 𝐷𝜃 corresponding to the reward signals. This typically requires

many training episodes before the effects of the updated rewards

induce behavioral changes in the robot. However, there is no guar-

antee that a policy will converge to a user-acceptable level of per-

formance in some given number of epochs. This could potentially

require the user to provide more feedback, which would increase

the size of 𝐷𝜃 ′ . Ideally, an agent that can integrate signals like

high-level directives can act in accordance with a user’s updated

preferences and limit the number of subsequent feedback issued by

the user. Thus, our proposed approach transforms high-level user-

provided directives into policy constraints, resulting in immediate

changes to a robot’s policy.

3.2 Overlays
We define a matrix overlay, or simply an overlay, to be an ordered

set of constraints on an agent’s policy encoded in associated if-this-

then-that (IFTTT) rules or logical formulae comprised of symbolic

predicates describing the state and action space. In practice, an

overlay acts as a shaping function that temporarily re-weights

the probabilities of taking actions in certain states conditional on

whether the corresponding overlay rule is satisfied.

Each overlay is associated with a tuple of logical functions

(𝑙𝑝𝑟𝑒 , 𝑙𝑝𝑜𝑠𝑡) ∈ [0, 1], corresponding to the pre-and postcondition

respectively of a behavioral rule of the form IF 𝑙𝑝𝑟𝑒 THEN 𝑙𝑝𝑜𝑠𝑡 a

meant to shape the policy toward a specific end. Both 𝑙𝑝𝑟𝑒 and 𝑙𝑝𝑜𝑠𝑡
are comprised of predicate functions 𝑐 (𝑠) ∈ 𝐶𝑠 and/or 𝑐 (𝑎𝑖 , .., 𝑎𝑛) ∈
𝐶𝑎 grounded to the agent’s state and action space, respectively

via corresponding binary classifiers. Suppose 𝑙𝑝𝑟𝑒 is sufficiently

satisfied in a particular state given the user-specified threshold 𝜏 .

In that case, 𝑙𝑝𝑜𝑠𝑡 is applied, filtering the robot’s candidate actions

HRI ’23, March 13–16, 2023, Stockholm, Sweden Jake Brawer et al.

as a function of how well they satisfy the rule. If a logical rule does

not contain a pre-condition, it is assumed 𝑙𝑝𝑟𝑒 = 1.

Algorithm 1:Modifying a policy by adding overlays

1 Input: policy 𝜋 , state 𝑠 , actions 𝐴, directive 𝑑 , overlay list 𝑂

2 𝜏 ← Confidence Threshold

3 𝑙𝑝𝑟𝑒 , 𝑙𝑝𝑜𝑠𝑡 , type← processDirective(𝑑)

4 𝑂 .append((𝑙𝑝𝑟𝑒 , 𝑙𝑝𝑜𝑠𝑡 , type))

5 𝑂𝑠𝑜𝑟𝑡𝑒𝑑 ← 𝑠𝑜𝑟𝑡𝐵𝑦𝑇𝑦𝑝𝑒 (𝑂)
6 𝜋 ← 𝜋

7 for 𝑎𝑖 ∈ 𝐴 do
8 for 𝑙𝑝𝑟𝑒 , 𝑙𝑝𝑜𝑠𝑡 , type ∈O𝑠𝑜𝑟𝑡𝑒𝑑 do
9 if type == Prohibit & 𝑙𝑝𝑟𝑒 > 𝜏 then
10 𝜋 (𝑎𝑖 |𝑠) = (1 − 𝑙𝑝𝑜𝑠𝑡 (𝑎𝑖 , 𝑠))𝜋 (𝑎𝑖 |𝑠)
11 else if type == Transfer & 𝑙𝑝𝑟𝑒 > 𝜏 then
12 𝑙∗𝑝𝑜𝑠𝑡 ← max𝑎 𝑗 ∈𝐴\𝑎𝑖 𝑙𝑝𝑜𝑠𝑡 (𝑠, 𝑎𝑖 , 𝑎 𝑗)
13 𝜋 (𝑎𝑖 |𝑠) = (1 − 𝑙∗𝑝𝑜𝑠𝑡)𝜋 (𝑎𝑖 |𝑠) + 𝑙∗𝑝𝑜𝑠𝑡𝜋 (𝑎 𝑗 |𝑠)
14 else if type == Permit & 𝑙𝑝𝑟𝑒 > 𝜏 then
15 𝜋 (𝑎𝑖 |𝑠) = 𝑙𝑝𝑜𝑠𝑡 (𝑎𝑖 , 𝑠)𝜋 (𝑎𝑖 |𝑠)
16 end
17 end
18 𝜋 (𝐴|𝑠) ← 𝜋 (𝐴 |𝑠)∑

𝑎∈𝐴 𝜋 (𝑎 |𝑠)
19 Return: 𝜋 (𝐴|𝑠)

We define three types of overlays corresponding to three classes

of directives typical during human-robot collaboration while im-

posing unique constraints on the policy. Algorithm 1, which we

refer to throughout the following subsections, defines and describes

these overlay types and the process for policy modification via the

overlays. For brevity, in subsequent rule definitions, we omit the

universal quantification of 𝑎 and subscript 𝑡 of 𝑠 .

1. Prohibitory Overlays: Prohibitory overlays (lines 9 − 10 of

Alg. 1) implement rules that prohibit actions in states that sat-

isfy the conditions imposed by the overlay. These correspond to

directives such as “Let’s not make the pastry first!” and the rule

𝑛𝑜_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑_𝑑𝑖𝑠ℎ(𝑠) =⇒ ¬𝑚𝑎𝑘𝑖𝑛𝑔_𝑝𝑎𝑠𝑡𝑟𝑦 (𝑎). Prohibitory over-
lays down-weight the action probabilities as a function of rule sat-

isfaction resulting in actions that satisfy the rule being suppressed.

2. Transfer Overlays: Transfer overlays (lines 11 − 13 of Alg. 1)
transfer probability density from a specified source action 𝑎 𝑗 to a

specified target action 𝑎𝑖 . These correspond to directives like “Tell
me how to make oatmeal instead of doing it for me!” and the logical

form 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 (𝑎𝑖 , 𝑎 𝑗) ∧𝑚𝑎𝑘𝑖𝑛𝑔_𝑜𝑎𝑡𝑚𝑒𝑎𝑙 (𝑎𝑖) ∧𝑠𝑎𝑦 (𝑎𝑖). Transfer
overlays shift the probability of an action 𝑎 𝑗 to an action 𝑎𝑖 as a

function of how well the rule is satisfied. In particular 𝑎 𝑗 is the

action that most satisfies 𝑙𝑝𝑜𝑠𝑡 (line 10). This is useful when the

robot has learned to perform a task in a particular way, but some

equivalent alternative is desired. For example, the robot could shift

from physically performing the steps to make oatmeal to guiding

the user through the oatmeal-making process via verbal instruction.

Unlike the other two overlay types, Transfer overlays require using

relational predicates (such as 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 (𝐴, 𝐵) used above).

3. Permissive Overlays: Permissive overlays (lines 14 − 15 of

Alg. 1) implement rules that permit actions in states that satisfy

the conditions of the overlay (Fig. 1, top panel). These correspond

to directives such as“let’s make cereal!” and the rule 𝑛𝑜_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

_𝑑𝑖𝑠ℎ(𝑠) =⇒ 𝑚𝑎𝑘𝑖𝑛𝑔_𝑐𝑒𝑟𝑒𝑎𝑙 (𝑎). Permissive overlays up-weight

satisfactory actions, making them more likely to be performed.

In this work, overlays are implemented as Prolog [48] queries

on a knowledge base maintained by the agent as it observes and

interacts with its environment. Additionally, for this study, wemake

the simplifying assumption that all predicates in 𝐶𝑠 and 𝐶𝑎 are of

perfect accuracy, meaning they evaluate to either 0 or 1, therefore

the value of 𝜏 is 0. We leave the exploration of the relationship of

predicate accuracy to model performance to future work.

Composability of Overlays: Crucially, multiple overlays can be

applied to a policy simultaneously, enabling their effects to stack

and interact. This is accomplished by iteratively updating 𝜋 (𝑎 |𝑠)
over all current overlays (lines 8 − 17 of Alg. 1). To ensure that the

desired effects of each overlay are carried through to the modified

policy, an ordering on the overlay list is enforced (line 5) such that all

transfer overlays are applied before any permissive or prohibitory

overlays. This prevents the latter two types from zeroing out the

probability of an action 𝑎 𝑗 before its transferred to a specified 𝑎𝑖 .

Removing Overlays:As overlays do not produce binding changes
to a policy, they can be removed at any point during the interaction.

That is, if a user specifies an overlay 𝑜𝑘 be removed, it is simply

removed from overlay list 𝑂 .

4 EXPERIMENTS
Assistive cooking is a particularly interesting application for HRC

learning approaches since it is inherently goal-oriented. Moreover,

preferences for goal completion can naturally emerge and persist

regarding the user’s diet, their style or approach to cooking, or

their desired level of support from the robot [10, 40]. Moreover,

these goals and preferences can regularly be subject to rapid and

temporary changes dependent on multiple user-related factors,

even within a single collaboration, necessitating both adaptive and

flexible policies. In addition, it is possible that a user may not have

a clear goal in mind at the outset of a collaboration (captured by

directives such as “let’s make something sweet!” or even “let’s make
something new!”). Therefore through our experiments, we seek not

only to evaluate how overlays augment the performance of a robot’s

policy, but how they do so as a function of whether or not goals

are explicitly incorporated in a robot’s state representation.

More specifically, we aim to answer four questions:

(1) Can overlays provide immediate and temporary adaptation of

the base policy to new user preferences?

(2) How effectively do overlays aid the learning of new user pref-

erences across interactions?

(3) Howwell can overlay-equipped policy adapt to new preferences

even when no goals are provided?

(4) How do overlays compare to other policy-shaping approaches

with respect to (1-3)?

4.1 Task and Problem Representation
The aim of our task is for a user and a robot to cook breakfast

collaboratively. The robot supports the user by either performing

each preparatory step or providing verbal. The user gauges the

robot’s performance not only based on its ability to anticipate the

Interactive Policy Shaping for Human-Robot Collaboration with Transparent Matrix Overlays HRI ’23, March 13–16, 2023, Stockholm, Sweden

steps necessary in producing the desired meal, but to do so in a

way that matches how the user prefers the meal to be completed.

Our experimental setup consists of a robot and a user in a sim-

plified kitchen environment (refer to Figure 2) preparing a main

breakfast dish and a side. The environment consists of a microwave,

a sink containing water, a pan that rests on a stove, a serving bowl,

a serving spoon, an eating spoon, a measuring cup, and a storage

shelf containing ingredients for making the meals. The main dish

could be cereal or oatmeal with a variety of toppings. The cereal

can be made by combining milk with "chocolate puffs" cereal. The

oatmeal can be made by mixing oats and salt with either water or

milk and heating the mixture in a pan placed on the stove. A variety

of toppings can be added to the oatmeal after it has been served

in the serving bowl. The desired side is heated in the microwave

before it is served. A meal is considered complete when the side

dish has been successfully warmed in and retrieved from the mi-

crowave, the main dish has been served in the serving bowl along

with the desired toppings (if any), and the eating spoon has been

placed in the workspace.

Our system learns a base policy utilizing a deep-Q-network

(DQN) [46] consisting of an MLP with a single hidden layer, pro-

viding better initial generalization capabilities to new preferences

than the classic tabular approach. The robot can take actions 𝐴 =

{𝑔𝑎𝑡ℎ𝑒𝑟 (𝑖), 𝑝𝑜𝑢𝑟 (𝑖, 𝑑, 𝑡), 𝑡𝑢𝑟𝑛_𝑜𝑛(𝑖, 𝑡),𝑚𝑖𝑥 (𝑖, 𝑡), 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑤𝑎𝑡𝑒𝑟 (𝑡),
𝑟𝑒𝑑𝑢𝑐𝑒_ℎ𝑒𝑎𝑡 (𝑖, 𝑡), 𝑐𝑜𝑜𝑘_𝑜𝑎𝑡𝑚𝑒𝑎𝑙_𝑤𝑎𝑖𝑡 (𝑖), 𝑡𝑎𝑘𝑒_𝑜𝑢𝑡_𝑚𝑖𝑐𝑟𝑜𝑤𝑎𝑣𝑒 (𝑖, 𝑡),
𝑝𝑢𝑡_𝑖𝑛_𝑚𝑖𝑐𝑟𝑜𝑤𝑎𝑣𝑒 (𝑖, 𝑡),𝑚𝑖𝑐𝑟𝑜𝑤𝑎𝑣𝑒_𝑤𝑎𝑖𝑡 (𝑖), 𝑠𝑒𝑟𝑣𝑒_𝑜𝑎𝑡𝑚𝑒𝑎𝑙 (𝑖)},
where 𝑖 is an item available in the interaction, 𝑑 is a container

such as a bowl or a pan, and 𝑡 ∈ {𝑆𝐴𝑌, 𝐷𝑂} denotes the support
type of the action, except for the 𝑔𝑎𝑡ℎ𝑒𝑟 action, which is always

performed by the robot. For example, if the robot takes the action

𝑝𝑜𝑢𝑟 (𝑚𝑖𝑙𝑘, 𝑝𝑎𝑛, 𝐷𝑂) the robot will physically pour the milk into

the pan, whereas the action 𝑝𝑜𝑢𝑟 (𝑚𝑖𝑙𝑘, 𝑝𝑎𝑛, 𝑆𝐴𝑌) has the robot ver-
bally prompt the user to do the same. The state space is a Boolean

vector where each element corresponds to a feature of the environ-

ment, including the presence of an item in the workspace or storage

area; whether an item is in a container or appliance; the power state

of the stove and microwave; the state of an item (warmed, boiling).

Crucially, the state space also contains a representation of the goal

meal. This includes three Boolean vectors relating to the current,

high level goal for each dish (i.e. pastry, oatmeal, and cereal) but

also dish variants (e.g. plain oatmeal, jelly pastry, etc.). We assume

a deterministic environment and a fully observable state space.

4.2 Experimental Setup
The goal of the physical and the simulated collaborations is for a

user and a robot to prepare a breakfast meal comprised of a main

dish (one of six variants of oatmeal or a bowl of cereal) and a side

dish (one of five microwaveable food items) per the person’s meal

preferences. Below we describe our experimental setup for the

physical robot and simulation experiments.

4.2.1 Simulations. In the simulation, human meal preferences are

represented via ground-truth sequences of desired robot actions

derived from corresponding Clique/Chain Hierarchical Task Net-

works (CC-HTNs) [16], which can model aspects of the tasks that

must be done sequentially (e.g. the muffin must be placed in the

microwave before the microwave is turned on) or are un-ordered

(e.g. the oatmeal toppings can be retrieved in any order). Devia-

tions from these sequences by the simulated robot result in the user

providing low-level directives in the form of corrective actions and

negative rewards. Each CC-HTN is parameterized by the desired

main and side dishes, the order in which they are to be completed

(e.g. the muffin should be prepared before the bowl of cereal), the

type of support the robot should provide for each dish (e.g. the

robot should physically assist in making cereal, but should only

provide verbal guidance while the person prepares the muffin), and

the liquid base for the oatmeal (water or milk), if oatmeal is the

desired main course, producing 540 possible meal preferences.

Our primary point of comparison is an adapted version of the

action-shielding approach developed in van Waveren et al. [47] for

a robot-assisted cooking task. The authors define and utilize three

types of shields: forbidden action shields, which block actions from

being considered by the policy if they lead to an undesired state,

action refinement shields, which fall back to a pre-defined sequence

of actions if a policy’s chosen action lead to an undesirable state,

and alternative item shields, which re-parameterizes a policy action

with a new item. Given that these analyses are concerned with

methods for modifying robot policies whilst minimizing low-level

user guidance, we omit the use of action refinement shields in our

simulations. Action refinement shields can trivialize the results

because they always suggest the complete desired action sequence

for the task. In addition, we extend the alternative item shield

(henceforth “alternative shield”) to allow for the re-parameterization

of any action parameters, not just those related to items.

We perform two sets of analyses in simulation. In both cases, we

first train two variants of a base robot policy on randomly sampled

meal CC-HTNs sets with no overlays or shields. One variant con-

tains a representation of the goal meal in the state representation,

while the other does not. Then, we sample new sets of CC-HTNs

representing new user preferences and for each variant compare:

(1) the initial performance of the base policy on these new meal

preferences with and without modifications by overlays, shields,

(2) how the performance changes with the addition of overlays

and shields when the robot trains on these new preferences.

Overlay Generation: At the outset of each testing meal, meal-

dependent sets of overlays and shields were automatically gener-

ated. The overlay set contained three overlays pertaining to:

• the main dish and its desired order of completion, e.g. the per-

missive overlay 𝑛𝑜_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑_𝑑𝑖𝑠ℎ(𝑠) →𝑚𝑎𝑘𝑖𝑛𝑔_𝑐𝑒𝑟𝑒𝑎𝑙 (𝑎),
• the side dish and its desired order, e.g. the permissive overlay

𝑜𝑛𝑒_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑_𝑑𝑖𝑠ℎ(𝑠) →𝑚𝑎𝑘𝑖𝑛𝑔_𝑝𝑎𝑠𝑡𝑟𝑦 (𝑎) ∧ 𝑠𝑤𝑒𝑒𝑡 (𝑎),
• the desired support type from the robot for a meal, e.g. the trans-

fer overlay ¬𝑡𝑤𝑜_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑_𝑚𝑒𝑎𝑙𝑠 (𝑠) → 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 (𝑎1, 𝑎2)
∧(𝑚𝑎𝑘𝑖𝑛𝑔_𝑐𝑒𝑟𝑒𝑎𝑙 (𝑎1)∧𝑑𝑜 (𝑎1))∨(𝑚𝑎𝑘𝑖𝑛𝑔_𝑝𝑎𝑠𝑡𝑟𝑦 (𝑎1)∧𝑠𝑎𝑦 (𝑎1)).

Shield Generation: The shield set was generated to maintain as

close to functional parity with the overlay set as possible, though

the size of this set was meal-dependent. The shield list always

included a forbid shield that encoded the main and side dish and

the order in which they were to be completed. The forbid shield

prevented the robot from retrieving ingredients from the second

meal before the first was completed, and vice versa. Additionally,

there were always four alternate item shields mapping each gather

action for the undesired sides to the gather action for the desired

HRI ’23, March 13–16, 2023, Stockholm, Sweden Jake Brawer et al.

Figure 2: Setup for our Physical Robot Experiments
sides. Finally, a variable number of alternate item shields were used

to re-parameterize the support type for the main dish and side dish

actions depending on the desired support type for each.

4.2.2 Physical Robot. As shown in Figure 2, our physical setup con-
sisted of a UR-5e robot, an overhead Microsoft Azure Kinect camera

[39] that monitored the position of ingredients in the workspace,

and a microphone for the human collaborator to instruct the robot

by providing overlays and corrective actions. We developed a sim-

ple language model that mapped templated commands to particular

overlay rules (see Table 6, in the appendix for examples). As shown

in the supplementary video, realistic-looking artificial ingredients

were used to ensure equipment safety, and liquids were replaced

with colored beads. Similarly, all appliances were modified to turn

on but not emit heat. The storage shelf containing the ingredients

required to make the meals was behind the robot. Each ingredient

was placed in a distinct colored container, which the robot could

bring to the workspace whenever needed. We then used color mask-

ing techniques to determine the positions of different ingredients

in the workspace, so they could be manipulated as required. The

workspace in front of the robot contained a microwave and a pan

placed on a stove, both modified to enable the robot to manipulate

them easily. To the robot’s left, the water-dispensing sink and a

stand containing the serving and the eating spoon were placed, and

to the robot’s right, the serving bowl was located.

4.3 Reasoning and Learning
Below we describe the reward-administration process as well as

the predicates utilized by the overlays.

4.3.1 Rewards. During the collaboration, the robot receives re-

wards potentially accompanied by a corrective action to be per-

formed the next time-step if the agent performs an incorrect action.

In our simulated experiments (see Sec. 5.1), these signals are used

to update the robot’s policy. The robot receives:

• 𝑟 = −0.5, if it performs a completely incorrect action,

• 𝑟 = −0.25, if the action only differs by its support type (e.g. the

robot does 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑤𝑎𝑡𝑒𝑟 (𝑆𝐴𝑌) instead of 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑤𝑎𝑡𝑒𝑟 (𝐷𝑂),
• 𝑟 = −1.0, and the episode is terminated if a robot’s action leads

to some unrecoverable terminal state (e.g. milk and water are

both added to the oatmeal),

• 𝑟 = 0.5, when one of the two dishes is completed,

• 𝑟 = 1.0, when the meal is fully complete

4.3.2 Predicates. We define a number of state and action predicates

used to construct the overlay rules.

• The dietary preferences are𝐶𝑑𝑖𝑒𝑡 = {𝑠𝑤𝑒𝑒𝑡 (𝑎), 𝑓 𝑟𝑢𝑖𝑡𝑦 (𝑎), 𝑑𝑎𝑖𝑟𝑦 (𝑎),
𝑔𝑙𝑢𝑡𝑒𝑛(𝑎), 𝑛𝑜𝑛_𝑣𝑒𝑔𝑎𝑛(𝑎), 𝑝𝑟𝑜𝑡𝑒𝑖𝑛(𝑎)} which return true if 𝑎 ma-

nipulates an ingredient corresponding to the dietary restric-

tion predicate (e.g. the actions 𝑝𝑜𝑢𝑟 (𝑏𝑎𝑛𝑎𝑛𝑎𝑠, 𝑝𝑎𝑛, 𝐷𝑂) and 𝑎 =

𝑔𝑎𝑡ℎ𝑒𝑟 (𝑏𝑎𝑛𝑎𝑛𝑎𝑠) both cause 𝑠𝑤𝑒𝑒𝑡 (𝑎) to evaluate to 𝑇𝑟𝑢𝑒). For

each dietary category, and for each possible dish type, there is

a set of predicates 𝐶𝑚𝑎𝑘𝑖𝑛𝑔 which return true if an action con-

tributes to the completion of a dish with the desired property

(e.g.𝑚𝑎𝑘𝑖𝑛𝑔_𝑓 𝑟𝑢𝑖𝑡𝑦 (𝑎) and𝑚𝑎𝑘𝑖𝑛𝑔_𝑛𝑜𝑛𝑣𝑒𝑔𝑎𝑛(𝑎) both evaluate

to 𝑇𝑟𝑢𝑒 for the 𝑔𝑎𝑡ℎ𝑒𝑟 (𝑠𝑎𝑙𝑡) action as this is a necessary step in

making fruity and non-vegan oatmeal variants, respectively.

• 𝐶𝑖𝑛𝑡𝑒𝑟 = {𝑑𝑜 (𝑎), 𝑠𝑎𝑦 (𝑎), 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 (𝑎1, 𝑎2)} are support predi-
cates that track whether an action is a do type or say type or

compares whether two actions are equivalent save for their sup-

port type, respectively.

• 𝐶𝑠𝑡𝑎𝑡𝑒 = {𝑜𝑛𝑒_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑_𝑑𝑖𝑠ℎ(𝑠), 𝑡𝑤𝑜_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑_𝑑𝑖𝑠ℎ(𝑠),
𝑛𝑜_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑_𝑑𝑖𝑠ℎ(𝑠)} track the number of completed dishes.

These predicates, along with the logical operators {∧,∨,¬,→} are
used to construct overlay rules, which are then evaluated using the

logical programming language Prolog [48].

5 RESULTS
Below we present the results from our simulated experiments and

proof-of-concept experiments with a physical robot.

5.1 Simulations
In our first set of experiments (Fig. 3) we compare two sets of

three models on their ability to adapt to novel meal preferences

without additional training. One set of models is trained with an

explicit representation of the goal meal in its state space (e.g. oat-

meal topped with fruit and a muffin), while the other set was not.

Each set trained three base policies on 10, 25, and 50 meals for 50

epochs each, representing three users that differ in the diversity

of their meal preferences. We then compared the models’ ability

to generalize to 50 new meals, including when aided by overlays

and shields. The results are averaged over three different runs with

three different random seeds. While there were no significant dif-

ferences in performance policies trained in a goal-oriented fashion

or not, we observed that models trained with overlays typically

outperform the base model and the model augmented with shields.

This suggests that overlays enabled the robot to exploit aspects of

its learning better than the base model can on its own.

For our second set of experiments (Fig. 4 and Tables 3-5 in the

appendix), we explored how overlays and shields benefited the

learning of new meal preferences over time. Again, we trained two

sets of three base models in the manner described above, each with

a different random seed on 50 randomly sampled training meals

for 500 episodes and sampled 50 more meals to retrain the policy

across 10 episodes. We averaged the results across three runs. While

both the base and overlay models improve substantially across the

10 episodes, the overlay model improves more rapidly. As in the

Interactive Policy Shaping for Human-Robot Collaboration with Transparent Matrix Overlays HRI ’23, March 13–16, 2023, Stockholm, Sweden

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0.40

0.44

10 25 50
Base Preference Training Set Size

M
ea

n
N

um
be

r o
f C

or
re

ct
io

ns
Goal Oriented Base Model

Shields + Goal Oriented Base Model

Overlays + Goal Oriented Base Model (Ours)

Base Model

Shields + Base Model

Overlays + Base Model (Ours)

Figure 3: Comparing adaptation to new meal preferences
based on initial preference training set size.
previous experiment (see Fig. 3), the shield model performs the most

poorly and notably does not improve substantially despite repeated

exposure to the same meal preferences across the 10 episodes.

5.2 Physical Robot
We show three proof-of-concept experiments using a real robot

and human collaborator (here, the researchers taking on the role of

a collaborator). These experiments differ from our simulated exper-

iments in two important ways: 1) overlays are added or removed

throughout the interaction, rather than just at the interaction’s

outset, capturing the volatile nature of user preferences; 2) goals

are high-level rather than specific (refer to sec. 4.1), modeling user

uncertainty regarding the course of the collaboration. Thus, in these

physical robot experiments summarized in Fig. 5 the human collab-

orator adds and/or revokes overlays throughout the collaboration.

We also demonstrate instances of the user altering the goal in the

middle of a collaboration (Fig. 5 b). For all experiments, we used the

same goal-conditioned base policy trained on 50 randomly sampled

synthetic meal collaborations (see sec.4.2.1) for 500 episodes, the

observed convergence point of the learning.

Fig. 5 (a) summarizes the first experiment. Here the user begins

only with the general desire to make oatmeal and a pastry, com-

municated with the directive “Let’s make the pastry first, and then
let’s make the oatmeal” which generates the corresponding per-

missive overlay and programs the corresponding high-level goal.

Subsequently, the user issues three more overlays including one

permissive overlay (“let’s make something fruity!”) one forbid over-

lay (“don’t use anything with dairy.”) and one transfer overlay (“You
make the rest of the oatmeal”). As a result, the overlay-assisted ro-

bot makes two errors, while the base model predicted 14 incorrect

actions, 6 of which were completely incorrect, while the remaining

8 had the incorrect support type.

Fig. 5 (b) summarizes the second experiment. The user initially

prompts the robot with the directive “first let’s make oatmeal, then
a pastry,” communicating both a a meal and order preference, as

well as conditions the robot’s policy on a high-level goal. Of note

here is that this overlay is subsequently revoked (“forget the last
rule”), and replaced with a new permissive overlay and goal (“let’s

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6 7 8 9 10

M
ea

n
N

um
be

r o
f C

or
re

ct
io

ns

Number of Epochs

Base Model

Overlays + Goal Oriented Base Model (Ours)
Shields + Base Model
Overlays + Base Model (Ours)

Shields + Goal Oriented Base Model
Goal Oriented Base Model

Figure 4: Comparing new meal preference learning.
make the pastry first then let’s make the cereal”). Additionally the

user provides a transfer overlay with the directive “you make the
cereal,”. In total, the robot makes only a two mistakes, while the

base model makes 6 incorrect predictions.

Fig. 5 (c) summarizes the final experiment. First, the user issues

the directive ‘let’s make cereal first, then the pastry,” expressing a

preference for the two dishes and their preferred completion order,

and conditions the robot’s policy on the high-level meal goal. The

user subsequently provides and additional permissive overlay with

directive “let’s make something with bread.” In total, the robot makes

no errors compared to the base model’s 3 prediction errors.

6 DISCUSSION
In this paper, we presented our Transparent Matrix Overlay system

and provide validation for this approach with our experiments in a

collaborative cooking task on a real robot and in simulation. With

these experiments, we sought to answer four questions:

(1) Can overlays aid in immediate adaptation to user preferences?
We showed that our approach is able to generalize more effectively

to new user preferences by reducing the number of corrective com-

mands a user must issue to the robot in order for it to act according

to these preferences. This was true both when overlays were pro-

vided at the beginning of a collaboration or added or revoked within

a collaboration, as was presented in our physical robot case studies.

(2) Can overlays be used to aid in the learning of new perferences?
Our overlay approach not only improved performance most rapidly

when training the policy on novel meal preferences, but it also

achieved the lowest error rate after 10 episodes compared to the

shielded model and the base policy. This was true for both variants

of the base policy equipped with overlays.

(3) How well can overlay-equipped policy adapt to new preferences
even when no goals are provided?
We did not observe significant differences based on the provision of

goals during training. This suggests that overlays can readily pro-

duce goal-directed behavior, even when the robot’s model possesses

no explicit representation of the goal. However, when the model

had access to a greater diversity of training meals, we observed

the most dramatic improvement in performance when overlays

HRI ’23, March 13–16, 2023, Stockholm, Sweden Jake Brawer et al.

a) Case Study 1

b) Case Study 2

c) Case Study 3

Permit Overlay Prohibit Overlay Transfer Overlay

Forget Correction

10. DO: put_in_microwave(egg)

Action Sequence
during Interaction

Base Model
Action Predictions

1. DO: gather(egg)

2. SAY: put_in_microwave(egg)

3. SAY: turn_on(microwave)
4. DO: microwave_pastry_wait(pie)
5. DO: take_out_microwave(pie)

6. DO: gather(measuring_cup)
7. SAY: collect_water(measuring_cup)

8. DO: pour_water(pan)
9. DO: gather(salt)
10. SAY: pour(salt, pan)
11. SAY: turn_on(stove)
12. DO: boil_liquid_wait(pan)
13. DO: gather(oats)
14. SAY: pour(oats, pan)
15. SAY: mix(pan)
16. SAY: reduce_heat(stove)
17. DO: cook_oatmeal_wait(stove)
18. DO: gather(bowl)
19. DO: gather(eating_spoon)
20. SAY: serve_oatmeal(bowl)
21. DO: gather(peanut_butter)
22. DO: gather(peanut_butter)
23. DO: gather(banana)
24. SAY: pour(banana, bowl)
25. DO: gather(jelly_pastry)
26. SAY: pour(blueberry, bowl)

 Directives

Let’s make the pastry first, and then
lets make the oatmeal
1. DO: gather(egg)
Let’s make something fruity
2. DO: gather(pie)
3. SAY: turn_on(microwave)
4. DO: put_in_microwave(pie)
5. SAY: turn_on(microwave)
6. DO: microwave_pastry_wait(pie)
7. DO: take_out_microwave(pie)
Don’t use anything with dairy
8. DO: gather(measuring_cup)
9. SAY: collect_water(measuring_cup)
You make the rest of the oatmeal
10. DO: pour_water(pan)
11. DO: gather(salt)
12. DO: pour(salt, pan)
13. DO: turn_on(stove)
14. DO: boil_liquid_wait(pan)
15. DO: gather(oats)
16. DO: pour(oats, pan)
17. DO: mix(pan)
18. DO: reduce_heat(stove)
19. DO: cook_oatmeal_wait(stove)
20. DO: gather(bowl)
21. DO: gather(eating_spoon)
22. DO: serve_oatmeal(bowl)
23. DO: gather(strawberry)
24. DO: pour(strawberry, bowl)
25. DO: gather(banana)
26. DO: pour(banana, bowl)
27. DO: gather(blueberry)
28. DO: pour(blueberry, bowl)

5. DO: pour(chocolate_puffs, bowl)
6. SAY: pour(milk, bowl)
Let’s make something with bread
7. DO: gather(roll)
8. DO: put_in_microwave(roll)
9. DO: turn_on(microwave)
10. DO: microwave_pastry_wait(roll)
11. DO: take_out_microwave(egg)

Action Sequence
during Interaction

Base Model
Action Predictions

1. DO: gather(measuring_cup)
2. DO: gather(eating_spoon)
3. DO: gather(milk)
4. DO: gather(chocolate_puffs)
5. DO: pour(chocolate_puffs, bowl)
6. SAY: pour(milk, bowl)

7. DO: gather(egg)
8. DO: gather(egg)
9. DO: turn_on(microwave)
10. DO: microwave_pastry_wait(roll)
11. DO: take_out_microwave(roll)

 Directives

Let’s make cereal first, then let’s
make pastry
1. DO: gather(bowl)
2. DO: gather(eating_spoon)
3. DO: gather(milk)
4. DO: gather(chocolate_puffs)

Action Sequence
during Interaction

Base Model
Action Predictions

1. DO: gather(egg)
2. DO: gather(egg)
3. DO: pour_water(pan)

4. DO: gather(salt)

5. DO: gather(salt)
6. SAY: turn_on(microwave)
7. DO: gather(salt)
8. SAY: turn_on(microwave)

9. DO: gather(eating_spoon)
10. DO: gather(bowl)
11. DO: gather(peanut_butter)
12. DO: gather(peanut_butter)
13. DO: gather(salt)
14. DO: gather(mixing_spoon)

 Directives

First let’s make oatmeal, then let’s
make the pastry
1. DO: gather(measuring_cup)
2. DO: collect_water(measuring_cup)
3. DO: pour_water(pan)
Forget the last rule
First let’s make the pastry, then let’s
make the cereal
4. SAY: turn_on(microwave)
5. DO: gather(pie)
6. SAY: put_in_microwave(pie)
7. SAY: turn_on(microwave)
8. DO: microwave_pastry_wait(pie)
9. SAY: turn_on(microwave)
10. SAY: take_out_microwave(pie)
You make the cereal
11. DO: gather(eating_spoon)
12. DO: gather(bowl)
13. DO: gather(chocolate_puffs)
14. DO: pour(chocolate_puffs, bowl)
15. DO: gather(milk)
16. DO: pour(milk, bowl)

Figure 5: Results of the Case Study with the Physical Robot Utilizing Overlays: The first column of case studies, a), b), and c)
depict the action sequence predicted by the base model. The second column shows the action sequence of the policy modified
by the overlays and corrective actions, and the third column graphically depicts the applied overlay’s activation intervals.

were applied to the goal-oriented base model compared to all other

models (refer to Fig. 4), suggesting that overlay-equipped models

have the potential to most effectively leverage this information.

(4) How do overlays compare to other methods regarding (1-3) ?
Surprisingly, our adapted version of the shielded approach from [47]

consistently under-performed w.r.t. the baseline policy despite ex-

plicitly encoding information about the updated preferences. Figure

5 (b) may provide some clues for why this is the case. In certain in-

stances, the base model became biased towards particular incorrect

actions (e.g., steps 1 − 2, 4 − 5). While the overlays would generally

suppress such actions from occurring, shields like the alternative

item shield utilized in our simulations merely re-parameterized

them if applicable, meaning similar biases would continue to per-

sist. Compounding this issue, shields like the alternate shield mask

these biases and prevent them from being easily learned away. That

is, alternate shields exchange an action 𝑎 for another 𝑎′, but per
van Waveren et al. [47] shielded training approach, only 𝑎′ is neg-
atively reinforced. This explains the poor learning gains made by

the shielded model as depicted Fig. 4, as the model fails to learn,

avoiding the 𝑎’s generating the incorrect 𝑎′s.

However, our approach is not without its limitations. First, we

assumed the existence of hand-crafted predicates and associated

classifiers rather than learning them autonomously. While we argue

that this is a reasonable assumption given the relatively controlled

nature of many HRC domains, such assumptions do limit the flexi-

bility of our approach. Future work should incorporate autonomous

methods for state and action abstraction using methods such as

those described in Konidaris et al. [25] and Ugur et al. [42]. Similarly,

other simplifying assumptions were made, such as the existence

of a relatively simple, discrete low-level state space, determinis-

tic actions, and non-parallel task completion. Future work should

evaluate the efficacy of our approach under more realistic settings.

ACKNOWLEDGMENTS
This work was partially supported by the Office of Naval Research

(ONR) award No. N00014-18-1-2776 and National Science Founda-

tion (NSF) under grants No. 2033413, 1955653, 1928448, 1936970,

1813651, 2106690, and IIS-2106690. Any opinions, findings, conclu-

sions, or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the NSF or

ONR.

Interactive Policy Shaping for Human-Robot Collaboration with Transparent Matrix Overlays HRI ’23, March 13–16, 2023, Stockholm, Sweden

REFERENCES
[1] Joshua Achiam et al. “Constrained policy optimization”. In: International con-

ference on machine learning. PMLR. 2017, pp. 22–31.

[2] Pulkit Agrawal. “The Task Specification Problem”. In: Conference on Robot
Learning. PMLR. 2022, pp. 1745–1751.

[3] Riad Akrour, Marc Schoenauer, and Michèle Sebag. “April: Active preference

learning-based reinforcement learning”. In: Joint European conference on ma-
chine learning and knowledge discovery in databases. Springer. 2012, pp. 116–
131.

[4] Riad Akrour, Marc Schoenauer, and Michele Sebag. “Preference-based policy

learning”. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer. 2011, pp. 12–27.

[5] Mohammed Alshiekh et al. “Safe reinforcement learning via shielding”. In:

Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1. 2018.
[6] Erdem Biyik and Dorsa Sadigh. “Batch active preference-based learning of

reward functions”. In: Conference on robot learning. PMLR. 2018, pp. 519–528.

[7] Nicolas Bougie and Ryutaro Ichise. “Towards Interpretable Reinforcement

Learning with State Abstraction Driven by External Knowledge”. In: IEICE
Transactions on Information and Systems 103.10 (2020), pp. 2143–2153.

[8] Jake Brawer et al. “Situated human–robot collaboration: predicting intent from

grounded natural language”. In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 827–833.

[9] Arthur Bucker et al. “Reshaping Robot Trajectories Using Natural Language

Commands: A Study of Multi-Modal Data Alignment Using Transformers”. In:

arXiv preprint arXiv:2203.13411 (2022).
[10] Micah Carroll et al. “On the utility of learning about humans for human-ai

coordination”. In: Advances in neural information processing systems 32 (2019).
[11] Paul F Christiano et al. “Deep reinforcement learning from human preferences”.

In: Advances in neural information processing systems 30 (2017).
[12] Yuchen Cui et al. “The empathic framework for task learning from implicit

human feedback”. In: arXiv preprint arXiv:2009.13649 (2020).
[13] Tyler Frasca et al. “Enabling fast instruction-based modification of learned

robot skills”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 35. 7. 2021, pp. 6075–6083.

[14] Javier Garcıa and Fernando Fernández. “A comprehensive survey on safe

reinforcement learning”. In: Journal of Machine Learning Research 16.1 (2015),

pp. 1437–1480.

[15] Mirco Giacobbe et al. “Shielding Atari games with bounded prescience”. In:

arXiv preprint arXiv:2101.08153 (2021).
[16] Bradley Hayes and Brian Scassellati. “Autonomously constructing hierarchical

task networks for planning and human-robot collaboration”. In: 2016 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE. 2016, pp. 5469–
5476.

[17] Bradley Hayes and Julie A Shah. “Improving robot controller transparency

through autonomous policy explanation”. In: 2017 12th ACM/IEEE International
Conference on Human-Robot Interaction (HRI. IEEE. 2017, pp. 303–312.

[18] Joey Hejna and Dorsa Sadigh. “Few-Shot Preference Learning for Human-in-

the-Loop RL”. In: arXiv preprint arXiv:2212.03363 (2022).
[19] Wenlong Huang et al. “Inner Monologue: Embodied Reasoning through Plan-

ning with Language Models”. In: arXiv preprint arXiv:2207.05608 (2022).
[20] Wenlong Huang et al. “Language models as zero-shot planners: Extracting

actionable knowledge for embodied agents”. In: arXiv preprint arXiv:2201.07207
(2022).

[21] Borja Ibarz et al. “Reward learning from human preferences and demonstrations

in atari”. In: Advances in neural information processing systems 31 (2018).
[22] Nils Jansen et al. “Safe reinforcement learning via probabilistic shields”. In:

arXiv preprint arXiv:1807.06096 (2018).
[23] Nils Jansen et al. “Shielded decision-making in MDPs”. In: arXiv preprint

arXiv:1807.06096 (2018).
[24] Yash Kant et al. “Housekeep: Tidying Virtual Households using Commonsense

Reasoning”. In: arXiv preprint arXiv:2205.10712 (2022).
[25] George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. “From

skills to symbols: Learning symbolic representations for abstract high-level

planning”. In: Journal of Artificial Intelligence Research 61 (2018), pp. 215–289.

[26] Bettina Könighofer et al. “Online shielding for stochastic systems”. In: NASA
Formal Methods Symposium. Springer. 2021, pp. 231–248.

[27] Kimin Lee, Laura Smith, and Pieter Abbeel. “Pebble: Feedback-efficient in-

teractive reinforcement learning via relabeling experience and unsupervised

pre-training”. In: arXiv preprint arXiv:2106.05091 (2021).
[28] Kimin Lee et al. “B-pref: Benchmarking preference-based reinforcement learn-

ing”. In: arXiv preprint arXiv:2111.03026 (2021).
[29] Minghuan Liu, Menghui Zhu, and Weinan Zhang. “Goal-conditioned reinforce-

ment learning: Problems and solutions”. In: arXiv preprint arXiv:2201.08299
(2022).

[30] Robert Loftin et al. “Learning behaviors via human-delivered discrete feedback:

modeling implicit feedback strategies to speed up learning”. In: Autonomous
agents and multi-agent systems 30.1 (2016), pp. 30–59.

[31] OlivierMangin, Alessandro Roncone, and Brian Scassellati. “How to beHelpful?

Supportive Behaviors and Personalization for Human-Robot Collaboration”.

In: Frontiers in Robotics and AI (2022), p. 426.
[32] Giulio Mazzi, Alberto Castellini, and Alessandro Farinelli. “Rule-based Shield-

ing for Partially Observable Monte-Carlo Planning”. In: Proceedings of the
International Conference on Automated Planning and Scheduling. Vol. 31. 2021,
pp. 243–251.

[33] Anis Najar and Mohamed Chetouani. “Reinforcement learning with human

advice: a survey”. In: Frontiers in Robotics and AI 8 (2021), p. 584075.
[34] Ali Payani and Faramarz Fekri. “Incorporating relational background knowl-

edge into reinforcement learning via differentiable inductive logic program-

ming”. In: arXiv preprint arXiv:2003.10386 (2020).
[35] Bharat Prakash et al. “Guiding safe reinforcement learning policies using

structured language constraints”. In: UMBC Student Collection (2020).

[36] Dorsa Sadigh et al. Active preference-based learning of reward functions. 2017.
[37] Dhruv Shah et al. “LM-Nav: Robotic Navigation with Large Pre-Trained Models

of Language, Vision, and Action”. In: arXiv preprint arXiv:2207.04429 (2022).
[38] Shaoyun Shi et al. “Neural logic reasoning”. In: Proceedings of the 29th ACM In-

ternational Conference on Information&KnowledgeManagement. 2020, pp. 1365–
1374.

[39] Jan Smisek, Michal Jancosek, and Tomas Pajdla. “3D with Kinect”. In: Consumer
depth cameras for computer vision. Springer, 2013, pp. 3–25.

[40] Sanjana Srivastava et al. “Behavior: Benchmark for everyday household ac-

tivities in virtual, interactive, and ecological environments”. In: Conference on
Robot Learning. PMLR. 2022, pp. 477–490.

[41] Elias Stengel-Eskin et al. “Guiding Multi-Step Rearrangement Tasks with Nat-

ural Language Instructions”. In: Conference on Robot Learning. PMLR. 2022,

pp. 1486–1501.

[42] Emre Ugur and Justus Piater. “Bottom-up learning of object categories, action

effects and logical rules: From continuous manipulative exploration to symbolic

planning”. In: 2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2015, pp. 2627–2633.

[43] Abhinav Verma et al. “Programmatically interpretable reinforcement learning”.

In: International Conference on Machine Learning. PMLR. 2018, pp. 5045–5054.

[44] Akifumi Wachi and Yanan Sui. “Safe reinforcement learning in constrained

Markov decision processes”. In: International Conference on Machine Learning.
PMLR. 2020, pp. 9797–9806.

[45] Basil Wahn et al. “Multisensory teamwork: using a tactile or an auditory display

to exchange gaze information improves performance in joint visual search”. In:

Ergonomics 59.6 (2016), pp. 781–795. url: http://dx.doi.org/10.1080/00140139.
2015.1099742.

[46] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning
8.3-4 (1992), pp. 279–292.

[47] Sanne van Waveren et al. “Correct Me If I’m Wrong: Using Non-Experts to

Repair Reinforcement Learning Policies”. In: Proceedings of the 17th ACM/IEEE
International Conference on Human-Robot Interaction. 2022, pp. 1–9.

[48] Jan Wielemaker et al. “Swi-prolog”. In: Theory and Practice of Logic Program-
ming 12.1-2 (2012), pp. 67–96.

[49] Nils Wilde et al. “Improving user specifications for robot behavior through

active preference learning: Framework and evaluation”. In: The International
Journal of Robotics Research 39.6 (2020), pp. 651–667.

[50] Aaron Wilson, Alan Fern, and Prasad Tadepalli. “A bayesian approach for

policy learning from trajectory preference queries”. In: Advances in neural
information processing systems 25 (2012).

[51] Christian Wirth et al. “A survey of preference-based reinforcement learning

methods”. In: Journal of Machine Learning Research 18.136 (2017), pp. 1–46.

[52] Yunkun Xu et al. “Look Before You Leap: Safe Model-Based Reinforcement

Learning with Human Intervention”. In: Conference on Robot Learning. PMLR.

2022, pp. 332–341.

[53] Wei-Nan Zhang et al. “Exploring implicit feedback for open domain conversa-

tion generation”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 32. 1. 2018.

[54] Menghui Zhu et al. “Mapgo: Model-assisted policy optimization for goal-

oriented tasks”. In: arXiv preprint arXiv:2105.06350 (2021).

View publication stats

http://dx.doi.org/10.1080/00140139.2015.1099742
http://dx.doi.org/10.1080/00140139.2015.1099742
https://www.researchgate.net/publication/366901988

	Abstract
	1 Introduction
	2 Related Work
	2.1 Robots Learning from Human Preferences
	2.2 Constrained Reinforcement Learning
	2.3 Merging Symbolic Reasoning with RL

	3 Proposed Approach
	3.1 Preliminaries
	3.2 Overlays

	4 Experiments
	4.1 Task and Problem Representation
	4.2 Experimental Setup
	4.3 Reasoning and Learning

	5 Results
	5.1 Simulations
	5.2 Physical Robot

	6 Discussion
	Acknowledgments

