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ABSTRACT

With robots leaving factories and entering less controlled domains,
possibly sharing the space with humans, safety is paramount and
multimodal awareness of the body surface and the surrounding
environment is fundamental. Taking inspiration from peripersonal
space representations in humans, we present a framework on a
humanoid robot that dynamically maintains such a protective safety
zone, composed of the following main components: (i) a human
2D keypoints estimation pipeline employing a deep learning based
algorithm, extended here into 3D using disparity; (ii) a distributed
peripersonal space representation around the robot’s body parts;
(iif) a reaching controller that incorporates all obstacles entering
the robot’s safety zone on the fly into the task. Pilot experiments
demonstrate that an effective safety margin between the robot’s and
the human’s body parts is kept. The proposed solution is flexible and
versatile since the safety zone around individual robot and human
body parts can be selectively modulated—here we demonstrate
stronger avoidance of the human head compared to rest of the
body. Our system works in real time and is self-contained, with no
external sensory equipment and use of onboard cameras only.
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Figure 1: Experimental scenario. The proposed system is
able to detect the presence of humans close to the robot’s
body thanks to a keypoint estimation algorithm combined
with a peripersonal space representation. Prior-to-contact
activations are translated into a series of distributed control
points (apps in figure) for pre-impact avoidance. See text for
details.

IL, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3171221.
3171245

1 INTRODUCTION

A future in which robots can cooperate with each other and with
humans requires them to be able to adapt and act autonomously in
unstructured and human-populated environments. In this context,
a fundamental issue is safety in human-robot interaction (HRI),
where collisions and contacts between the robot and the human are
the most important aspect. This is the subject of so-called physical
human-robot interaction (pHRI), where the handling of collisions
between machines and humans can be divided into two phases:
pre-impact and post-impact [1].

Research in the post-impact direction relies typically on joint
torque or force/torque sensors, whose measurements together with
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Figure 2: Software architecture for physical human-robot interaction. In this work, we develop a framework composed of: i)
a human pose estimation algorithm, ii) a 2D to 3D disparity mapping, iii) a peripersonal space collision predictor, iv) a pHRI
robot controller for distributed collision avoidance. See text for details.

a robot model allow for contact localization (see [2] for a recent sur-
vey). Robot redundancy can then be employed to still accomplish the
task while not exerting forces at the obstacle, such as using the resid-
ual method [1, 3]. Combining the above results with the trajectory
scaling strategy, Haddadin et al. [4] present a framework in which
the robot switches between different control strategies depending
on the collisions detected. The roots of pre-impact strategies lie
in the use of motion planning to find collision-free end-effector
trajectories, relying on full knowledge about the robot body and
environment. In dynamic scenarios, planning needs to be comple-
mented by reactive strategies such as the potential field approach
[5]. The elastic strips framework [6] combines reaching for a goal
configuration (global behavior) with reactive obstacle avoidance
(local behavior) through incremental modification of a previously
planned motion. Flacco et al. [7] employ a so-called depth-space
approach, in which they use an external Kinect sensor and a 2.5D
space projection to obtain distances between obstacles and interest
points on a robot arm. These are in turn used to generate corre-
sponding repulsive vectors that are remapped into the joint space,
effectively preventing joint movement in the collision direction.
Magnanimo et al. [8] do not address the control problem but, unique
to their work, they provide a framework to dynamically construct
warning and protective safety fields around a manipulator relying
on laser scanners to sense the environment and proprioception to
sense the manipulator’s own velocity.

To guarantee safety in physical human-robot interaction, an es-
sential component is to reliably perceive the human. This usually
translates to methods that segment the human body parts from
the background and localize them with respect to the robot body.
This is known as human pose / keypoints estimation or skeleton
extraction—please refer to recent surveys such as [9] for 3D pose es-
timation, and [10, 11] for 3D pose estimation from a RGB-D camera.
In a robotics context, particle filters [12] or Iterative Closest Points
(ICP) approaches [13] have been used for human pose estimation.

In this work, we propose a compact, flexible, and biologically
inspired solution for safe pHRI in general and collision avoidance
in particular that departs from the body of work reviewed above in
the following aspects. First, for human keypoints estimation, no ex-
ternal sensor and no depth sensor is employed. Instead, we present
a real-time pipeline that leverages deep learning methods for 2D

pose estimation (e.g. [14, 15]) in combination with disparity map
computation from a binocular humanoid robot head. Second, we
move significantly beyond solutions that consider the robot’s end-
effectors exclusively or those where the robot’s body is modeled
by a set of geometrical collision primitives (e.g., spheres). Instead,
we take inspiration from biology, where the defensive peripersonal
space (PPS) representation is maintained by the brain in the form
of a network of neurons with visuo-tactile receptive fields (RFs) at-
tached to different body parts and following them as they move (see
e.g. [16] for a recent survey). This forms a distributed and much
denser coverage of the “safety margin” around the whole body.
Furthermore, this protective safety zone is dynamically modulated
by the state of the agent or by approaching object identity and
“valence” (positive or negative)—e.g., safety zones around empty
vs. full glasses of water [17] or reaction times to spiders vs. but-
terflies [18]. We capitalize on the PPS representation developed
by Roncone et al. [19, 20] around the artificial pressure-sensitive
skin of the iCub humanoid robot and provide extensions for the
purposes of this work. Lastly, we present a novel robot controller
that combines reaching in 3D Cartesian space with simultaneous
obstacle avoidance, with control points created dynamically on the
fly on the robot’s hands and forearms based on the peripersonal
space activations (as illustrated in Fig. 1).

This article is structured as follows. The next Section discusses
the Materials and Methods. This is followed by the Experiments
and Results in Section 3, and finally the Conclusion, Discussion,
and Future Work in Section 4.

2 MATERIALS AND METHODS

2.1 The iCub humanoid robot and hardware
components utilized

The iCub [21] is a child-sized full humanoid robot (see Fig. 1). For
this work, we focus on using its upper body with a 3 degrees of
freedom (DoF) torso and two 7 DoF arms. In addition, iCub is
equipped with a variety of sensors, of which the cameras, joint
encoders, and, indirectly, the artificial skin are relevant here. The
iCub head features a 3 DoF neck and a binocular stereo system
composed of 2 identical cameras in a human-like arrangement, with
3 DoFs allowing mechanically coupled tilt motion, and independent
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version and vergence movements. Large areas of the iCub body are
covered with an artificial electronic skin [22], which allows iCub to
sense touch—applied pressure. In this work, the skin is not directly
used, but the peripersonal space representation we employ and
extend has its origin in the nature of this tactile array.

2.2 pHRI architecture

The software architecture of our pHRI framework, presented in
Fig. 2, is implemented in C++ and Python with Yarp [23]. Each node
in the diagram represents a module in the pipeline.

e Human pose estimation processes images from a camera
and generates human keypoints, presented in Phase 1 of
Section 2.3;

e Disparity map builds the depth map of the environment
from images of stereo-camera. This is the result of previous
work [24, 25];

e Skeleton3D constructs the 3D human pose estimation from
2D computations and the depth map of the environment (see
Phase 2 of Section 2.3);

e Peripersonal Space serves as a visual-based collision pre-
dictor, and is described in Section 2.4;

e pHRI Ctrl (physical Human-Robot Interaction Control) trans-
lates the spatial perception of robot to motion for safe inter-
action. The controller is detailed in Section 2.5.

2.3 Human keypoints estimation

In general, the purpose of human pose estimation algorithms is to
provide the configuration of the human body from input image(s) or
video. In our case, the input is the set of two images (with resolution
of 320 X 240 pixels) coming from the iCub cameras. The iCub head-
eye plant differs from common stereo camera systems in that the
eyes/cameras are not fixed and move independently in space. This
has two consequences: i) it allows for a compact, self-contained
system that does not need any external device to perceive depth
information, and ii) it is not possible to pre-calibrate the plant for
the purposes of a disparity map computation-but calibration needs
to be performed on the fly. Because of the latter, we separate our 3D
pose estimation algorithm into two successive phases: (i) 2D pose
estimation, and (ii) mapping of the 2D pose into the 3D Cartesian
space of the robot; they are detailed below.

Phase 1 — 2D Pose Estimation. The 2D Pose estimation algorithm
has the goal of computing the highest probability pixel locations
of human keypoints in single camera frames; in our case: head,
shoulders, elbows, hands, hips, knees, and ankles. We denote these
locations as keypoint pixels—e.g. [upgy,vg] for the head. The posi-
tions of these body parts represent a simplified human model, which
is suitable for our task: the keypoints act as obstacles for the robot
control algorithm. We adopt the DeeperCut approach [15], a state-
of-art deep learning method for multi-person pose estimation. The
main component of the algorithm is the parts detector constructed
by ResNet [26], a deep learning architecture for object detection. In
addition, DeeperCut uses an incremental optimization approach
with integer linear programming [27] and an image-conditioned
pairwise term between body parts to improve the pose estimation
quality. The model is then trained on the Leeds Sports Poses dataset
[28] for multiple-person, and the MPII Human Pose dataset [29] for
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a single person. The implementation of this algorithm in our system
(using Tensorflow [30] with a single NVIDIA GTX1080i GPU) can
provide body parts poses at a frame rate of 30ms. An example of
results from this algorithm can be seen in Fig. 7, panels A.

Phase 2 - 2D to 3D Pose Mapping. The second step of our human
keypoints estimation algorithm is to reconstruct 3D poses of body
keypoints thanks to the single-camera 2D information from Phase
1 and a disparity map computed from both cameras (as shown in
Fig. 7, subplot B). For the reasons detailed above, the disparity map
computation does not rely on a pre-existing camera calibration, but
needs to rectify both cameras in real-time. For this reason, it is com-
posed of an initial rectification algorithm followed by a disparity
estimation step. The rectification algorithm aligns the two images
to a common plane and keeps this transformation up to date with
the robot’s motion (neck, eyes and torso) [25]. The disparity estima-
tion step evaluates pixel displacements between the two rectified
images [24], making use of the Efficient Large-Scale Stereo (ELAS)
Matching algorithm [31]. The outcome of this 2D to 3D mapping
is to complement all the pixels from the left and right cameras
with additional depth information in real time. As a result, it is
possible to estimate the 3D Cartesian coordinates of each keypoint
pixel estimated in Phase 1 from the above computed depth—that
is, we can compute 3D keypoints coordinates [xp,yp,zg] from
2D keypoints pixels [ug,vg]. More specifically, we average the
estimated 3D positions in the 7 X 7 pixels neighborhood of each
keypoint to improve robustness. In addition, we apply biomechani-
cal constraints of human body size and median filters on keypoints’
3D poses to reduce the noise of estimation results. Importantly,
this computation is performed in parallel with Phase 1 thanks to
the YARP distributed software architecture. The human 3D pose
estimation that results from this phase is shown in Fig. 7, panels C.

Moreover, the visual pipeline not only detects the body parts,
but identifies them as well. The recognized body part identities (e.g.
head vs. hands) are then exploited to modulate the robots’ safety
margin and finally regulate robot behavior. The software developed
for this module is freely available [32].

2.4 Peripersonal space representation

In Roncone et al. [19, 20], a representation of the protective safety
zone for the iCub was developed. Authors chose a distributed rep-
resentation in which every taxel (tactile element of the robot’s
artificial skin) is learning a collection of probabilities regarding the
likelihood of objects from the environment coming into contact
with that particular taxel. This is achieved by making associations
between visual information, as the objects are seen approaching
the body, and actual tactile information as the objects eventually
physically contact the skin. A volume was chosen to represent the
visual receptive field around every taxel: a spherical sector growing
out of every taxel along the normal to the local surface. For the
purposes of this work, the visual RF size was extended to maximum
45c¢m away from every taxel, motivated by new findings regarding
peri-hand PPS [33]; Fig. 3 schematically illustrates one of such RFs
on the robot (in total, there are five RFs on every palm, and 24
around each forearm).

Different than in the work of Roncone et al., we did not train
the visual RFs here; instead, we designed them uniformly for all
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Figure 3: Schematic illustration of PPS receptive fields
on the robot. There are five such receptive fields at the
palms/hands and 24 around each of the forearms. From [19]
with the permission of authors.
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Figure 4: Activation curve of individual taxels’ RFs and
effect of modulation. Pink bars represent the discretized
representation stored into the taxel. The green curve is
the result of the Parzen window interpolation technique,
whereas the blue and brown dashed curves show the effect of
modulation—response attenuation by 50% and positive mod-
ulation by 100% respectively. The black line marks an acti-
vation threshold of 0.2, which roughly corresponds to dis-
tances from the origin of the RF of 23cm, 30cm and 35¢cm in
attenuated, normal, and expanded case respectively.

taxels. To preserve compatibility with the original implementation,
the taxel RFs have a discrete representation divided in 20 bins that
relate distance of stimulus/obstacle to activation, which in turn
correspond to the probability of eventual collision—see Fig. 4. The
discrete representation is then interpolated using a Parzen win-
dow estimation algorithm, giving rise to the green curve in Fig. 4.
Furthermore, in our implementation, the PPS representation can
handle multiple stimuli—objects in the environment—concurrently,
with every taxel deriving its response from the closest object. When
the RFs of individual skin taxels are combined, a “safety margin”
volume around the respective body parts is constructed. Such a
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Figure 5: PPS visualization of the two iCub’s forearms (front
view). In the picture, two negatively modulated / attenuated
PPS RFs (75% for the left forearm and 50% of the nominal RF
for the right forearm).

“protective zone” around the forearm is visualized in Fig. 5 (modu-
lated/attenuated version chosen for visualization—see Section 2.4
below). The change of the activation w.r.t. the distance (from clos-
est to farthest) is denoted by the change of color from red to light
yellow, while the robot body is sketched in gray and black color.

PPS Modulation. Inspired by the human PPS and its modulation
reviewed above—e.g., smaller safety zones around empty vs. full
glasses of water during reaching [17]—we implement a similar
mechanism here. Such a case is illustrated schematically in Fig. 6:
an overall increase / modulation of activation values changes the
distance at which a certain activation is reached by an oncoming
stimulus, and hence the effective safety margin secured by the
robot’s responses is also adjusted. In our case, the modulation will
pertain to the “sensitivity” of human body parts: for example, while
it may be acceptable to come into contact with the hands of the
human, the head should be avoided with a much larger safety
margin.

We associated a value between [—1,1] to each object, as its “va-
lence” 6(t) with negative values for stimuli where a smaller safety
margin is allowed and positive modulation for stimuli that should
be avoided with a bigger margin—threatening or fragile objects
for example. The final modulated PPS activation an, ;(t) of the i-th
taxel w.r.t. an object with valence 6(t) is then calculated as follows:

am,i(t) = ait)[1+0()] (1)

where a;(t) is the PPS activation of i-th taxel at instant t. The
mechanism is further illustrated in Fig. 4. The modulation simply
translates the activation curve (y-axis). If associated with a particu-
lar activation threshold to trigger behavior (say a = 0.2 which will
be used here), this will be reached at different distances depending
on the modulation—for example at d2 = 30cm in the nominal case
and d2 = 35cm when subject to positive modulation - see Fig. 6.
This gives rise to effective expansion/shrinking of the aggregated
safety margin (composed of multiple RFs), as shown in Fig. 5. The
software developed for this module is freely available online [34].



Compact real-time avoidance on a humanoid robot for human-robot interaction

(a) (b)

Figure 6: Peripersonal space modulation illustration. Recep-
tive field extending 45cm and its Gaussian-like distribution
of activations (highest at d = Ocm, lowest at the periphery).
(a) Nominal RF. (b) Positively modulated RF.

2.5 Reaching with avoidance on the whole arm
surface

The proposed controller has its roots in the Cartesian controller
of Pattacini et al. [35] who proposed an inverse kinematics solver
and minimum-jerk controller for the iCub robot. There, the solver
is formulated as a nonlinear constrained optimization problem
expressed in the joint position space and makes use of the IpOpt
library [36]; it is decoupled from the controller part. In this work,
we propose a solution that unifies the inverse kinematics and the
robot control problems into a single formulation: the problem is
directly expressed in the joint velocity space and the solutions to
it—joint velocities—can be directly used to control the robot. More
specifically, at every time step ¢ = f (with a period Ts = 20ms), we
compute the desired joint velocities q* () by solving the following:

i =ergmi o - o5 + Tl |
geRrRn?

_ . @
st { QL <q+Tsq<qu
9L <q<qu
where q = q(f) represents the instantaneous configuration of the
n joints of the robot arm (n = 7 in this work), Xxgg = xgg/(f) is the
6D pose of the end-effector in the Cartesian space (comprising of
position and orientation), Xxg g4 is the desired end-effector 6D pose,
and J(q) is the Jacobian. Equation 2 models the reaching task as an
optimization problem, specifically as a minimization of the distance
between the desired end-effector pose X, and one-step-ahead
prediction giving the future pose that can be computed from the
current pose Xgg, current joint configuration q(f), and joint veloci-
ties q (the unknown). It is well established that, given a sufficiently
small Tg, this can be approximated by the Jacobian map J(q) mul-
tiplied by the vector of joint velocities q, which are the unknown
of the problem. To ensure feasibility of the optimal solution, the
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minimization needs to be carried out under a set of constraints
that confine the one-step-ahead estimated joint position q + Tsq
within the feasible joint range [qr,qu] (first row); furthermore,
we limit the estimated joint velocity q to be within the maximum
and minimum limits [qz, qi7] as per specifications of the respective
robot actuators (second row). Other non-linear constraints can be
conveniently added for further specialization of the control loop
(see below). Again, we make use of the Ipopt library [36].

The reaching task has to be reconciled with simultaneous ob-
stacle avoidance. To compute the obstacles, we capitalize on the
PPS representation described in Section 2.4. Roncone et al. [19, 20]
aggregate the distributed PPS activations into a single locus and
strength per body part (forearm or hand), using a weighted average
of position P¢, normal direction n¢ (to the skin at the individual
taxels), and activation appg as follows:

Pc(t) =

=
ngle

[ai(®) - pi(1)]

i=1

[ai () - ni(0)]

nc(t) =

x| =
DM~

1l
-

apps(t) = TE{C[WU)]

with subscript i denoting the i-th taxel, i = 1...k. The idea of
PPS activation aggregation is illustrated in Fig. 7a where the high-
resolution activations on forearm and hand (panels 3 and 4) are
combined into single vectors per body part - red arrows in panel C.
These aggregated vectors acting along the normal are schematically
illustrated in Fig. 1. The weighted average position P¢ is employed
as a new control point C; that can then be used to bring about
“reaching” or avoidance behaviors along the normal nc. However,
only one task—either reaching or avoidance—at a time can be ac-
complished for a single control point. In this work, we introduce
a novel solution that enables reaching with simultaneous obstacle
avoidance by incorporating these additional control points into
the controller described in Equation 2 as additional joint velocity
constraints. This remapping of the Cartesian “repulsive vectors”
into joint space constraints is described by the following equations:

T
s=-Jc-nc-Vc-apps
qL,j = max{VL’j,sj} , Sj = 0 (4)
qu,j = min{VUJ,sj} , $;<0

where C is a control point belonging to a generic robot link, J¢
is its associated Jacobian, V¢ is a gain factor for avoidance, and
VL, Vu are a predefined set of bounding values of joint velocity,
e.g. £25deg/s. When projecting repulsive vectors in joint space, we
obtain the value s;, whose component s represents the “degree of
influence” of the Cartesian constraint on the j-th joint. From these,
the admissible upper (qy7) and lower (qr) velocity limits of those
joints influenced by the risk of collision are reshaped. Differently
than [7], which inspired our approach and where joints that would
move toward the obstacle are stopped, we bring about an active
avoidance behavior. The avoidance action is thus proportional to
the “threat level”, apps, and for individual joints to how much
each joint can contribute in the current configuration. To improve
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smoothness, the desired target velocities are fed to a minimum-
jerk filter; velocities are then integrated to compute target joint
positions, which are directly fed to low-level position-direct motor
controllers. This last step is standard to most robotic platforms—see
[35] for details on this for what concerns the iCub.

The proposed approach is relevant to the robot control commu-
nity in that it uses a constrained non-linear optimization technique
for inverse kinematics and control. By sidestepping the computa-
tion of an analytical solution to inverse kinematics, the system is
automatically immune from singularities; however, it may incur in
sub-optimal local minima. Yet, this problem is mitigated in practice
due to the large number of degrees of freedom available. In future
work, the framework can be complemented by Cartesian planning
algorithms (cf. Section 4). To our knowledge, this is the first attempt
at developing a robot control software that yields velocity profiles
adopting nonlinear optimization. In addition, the novelty of this
approach has been further enhanced by the integration of avoid-
ance capabilities. Software developed for this module is also freely
available online [37].

3 EXPERIMENTS AND RESULTS

In this section, we describe experimental results regarding three
different HRI scenarios, in which the robot executes pre-defined
tasks (reaching for a position, following a trajectory) and the human
experimenter interferes. For the purposes of this work, we perform
pilot experiments in which trained human participants interact with
the robot; these prototypical experiments (described in Sections 3.1
to 3.3) lay the ground for future user studies, which are out of the
scope of this work. In all experiments, a minimum threshold of
apps = 0.2 is set for the avoidance behavior to be triggered; also,
the robot is commanded to either static or moving position targets,
with a fixed orientation (palms pointing inwards). We report results
using one arm of the robot with PPS around its hand and forearm
and control of 7 joints of the arm; however, the framework operates
in the same way for both arms and three torso joints could be
toggled on using the very same controller. During robot operation,
data from several software modules (skeleton3D, Peripersonal Space,
PHRI Ctrl) and robot sensors (joints encoders, cameras) are recorded
and later analyzed in Matlab. Fig. 7 provides a static overview of the
perception part of the pipeline. Please refer to the accompanying
video for an overview of the setup and a qualitative evaluation of
the performance: https://youtu.be/A9Por3anPJ8. Our framework
has been released under the LGPL v2.1 open-source license, and is
freely accessible on GitHub [32, 34, 37]; the control architecture is
readily available for any iCub robot, and can be extended to other
platforms.

3.1 Reaching for static target with
simultaneous avoidance

In this experiment, the iCub is tasked with maintaining its end-
effector at a predefined position (i.e. the control target is a static 3D
point), while avoiding collisions when the human is approaching
the robot body. Note that collision avoidance has always priority,
since it is a constraint for the controller and needs to be satisfied
at all times, whereas the reaching task is expressed as a criterion
to be minimized. That is, when the human interferes, the robot

Phuong D.H. Nguyen et al.

(a) Normal (unmodulated) PPS. Human hand triggers high activation of
the right palm and the inner part of the right forearm PPS.

(b) Modulated PPS with attenuated response for hands and arms.

Figure 7: Perception, PPS representation, and its modulation
on iCub during interaction with human. Panels 1,2,3,4: PPS
activations on left forearm, left hand, right forearm, and
right hand, respectively visualized using iCub skinGuis. Tax-
els turning green express the activation of the correspond-
ing PPS representation (proportional to the saliency of the
green). Panel A: skeleton of human in 2D. Panel B: dispar-
ity map from stereo-vision. Panel C: estimated skeleton of
human in 3D alongside with the iCub robot. Red arrows in
this panel show the direction and magnitude of aggregated
PPS activations on iCub body parts w.r.t. the obstacle (hu-
man right hand).

should be able to avoid contact with the human at any given mo-
ment, departing from its predefined static target when necessary.
Results from this experiment are shown in Fig. 8. The human body
parts activate the PPS when they enter their RFs (45cm zone from
the skin surface), and increase the activations if they continue to
get closer to the robot’s arm. However, there is no effect on joint
velocities until the activations reach the threshold of 0.2, which
is corresponding to approximately 30cm away from the skin sur-
face (shown by the dashed green straight line in top two panels;
cf. Fig. 4). The end-effector error is minimal there. After about 2.7s
into the experiment, the human body parts induce super-threshold
PPS activations at the robot hand and partially at the forearm. This
propagates into the robot control algorithm that adaptively tunes
the joint velocity limits for all affected joints, as specified by Eq. (4).
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Figure 8: Reaching for static target with avoidance. Top two
panels (Distance-Activation) for robot end-effector / elbow:
blue and orange lines: distance from left hand and head of
human respectively; light green areas: PPS activations appg
on robot body parts (hand - top panel, forearm - 2nd panel);
green dotted line: distance at which PPS activation exceeds
0.2 and avoidance is activated (cf. Fig. 4); Panels 3-4 (Joint
velocity): Joints velocity (in blue) and their adaptive bounds
(light blue band) — two selected joints only. Bottom panel
(End-effector error): Euclidean distance between reference
and actual position of the end-effector.

As shown in Fig. 8, panels 3 and 4 (only two joints out of seven are
shown for clarity), the range of velocity limits is reduced and the
joint velocities are consequently constrained such that avoidance
is generated. The activations on robot’s left hand influence all the
joints on the chain, while forearm activations only those from the
elbow up (more proximal). Eventually, the robot’s end-effector can-
not stay at the desired position but avoids the human body parts
when they approach, shown by the growing error in the bottom
panel of Fig. 8 (e.g. after 2.7s).
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Figure 9: Static target and PPS modulation: human hand vs.
head. See Fig. 8 for explanation of individual panels and text
for details.

3.2 Reaching with modulation for different
body parts (human head vs. hand)

The setup for this experiment is similar to Section 3.1. The main
difference is that we assigned different relevance for the different
human body parts, as specified in Section 2.4. This directly relates
to a realistic human-robot interaction in which the safety of some
body parts (e.g., head) should be guaranteed with a bigger margin
than for others (e.g., arms). To illustrate the principle, we apply
a 50% PPS attenuation at the hands (i.e. § = —0.5 in Eq. 1; see
also blue dashed curve in Fig. 4 and left forearm PPS in Fig. 5),
while we positively modulate the PPS pertaining to human head
(valence 1.0; red dashed curve in Fig. 4). A potential interaction
scenario that can take advantage of PPS modulation is physical
human robot cooperation in a shared environment, where the robot
may need to come into contact with the human hands to receive
or hand-over objects (active contacts), but must always avoid any
collisions with her head. Results from the experiment are reported
in Fig. 9 and structured similarly to Section 3.1, with the exception
that we do not report joint velocity plots for clarity. Due to the
reduced safety margin, the human left hand (blue line in panels
1 and 2 of Fig. 9) can get closer to the robot’s end-effector and
elbow respectively, while it only activates the robot’s PPS slightly,
just above 0.2 (before t ~ 5s). As a consequence of this, there are
only small regulations applied on joint velocity bounds, and the
robot can still perform the task successfully (as shown by the small
error in panel 3 of Fig. 9, ¢ = [0s ... 5s]). At t ~ 22.5s, the human
head enters the peripersonal space of the end-effector and triggers
a strong response of the PPS representation. Therefore, in order
to preserve safety, the robot cannot maintain the reaching task
(the end-effector error in panel 3 increases) but is successful in
maintaining a safe margin from the human head.
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Figure 10: Moving target on a circle. See Fig. 8 for explana-
tion of individual panels and text for details.

3.3 Following a circle while avoiding human

In this experiment, the robot is commanded to follow a circular tra-
jectory with the left arm, while the human interferes with this task,
hence triggering the avoidance behavior. The valences of human
body parts are kept same as in Section 3.2 (attenuation for hand;
boosting for head). Results are shown in Fig. 10, with 4 joint velocity
subplots (2 for the elbow and 2 for the wrist). Similar to the static
reaching case, when the human parts approach close enough to
the robot’s arm (¢ ~ 8s), the controller chooses to avoid the human
rather than continuing to follow the desired path. This behavior
can be recognized by the relation between distances-activations
(in the Distance-Activation panels in Fig. 10) and the changes of
joint velocity bounds (in panels 3 to 6). Without the interference
of the human (e.g. before ¢t = 8s), the bounds of joint velocities
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keep the preset values (+25deg/s), leading to successful tracking
behavior of the robot’s end-effector on the desired trajectory (small
error shown in the panel 7). Conversely, the joint velocity bounds
are dynamically adapted when the human approaches (the blue
band reduces), thus causing the robot to deviate from the demanded
trajectory (error increases cyclically after t =~ 8s).

4 DISCUSSION AND FUTURE WORK

We developed and tested a new framework for safe interaction of a
robot with a human composed of the following main components:
(i) a human 2D keypoints estimation pipeline employing a deep
learning based algorithm, extended here into 3D using disparity; (ii)
a distributed peripersonal space representation around the robot’s
body parts; (iii) a new reaching controller that incorporates all ob-
stacles entering the robot’s protective safety zone on the fly into the
task. The main novelty lies in the formation of the protective safety
margin around the robot’s body parts—in a distributed fashion and
adhering closely to the robot structure—and its use in a reaching
controller that dynamically incorporates threats in its peripersonal
space into the task. The framework was tested in real experiments
that reveal the effectiveness of this approach in protecting both
human and robot against collisions during the interaction. Our
solution is compact and self-contained (onboard stereo cameras in
the robot’s head being the only sensor) and flexible, as different
modulations of the defensive peripersonal space are possible—here
we demonstrate stronger avoidance of the human head compared
to rest of the body.

Relying solely on visual perception of the human is, however,
not enough to warrant safe interaction under all circumstances.
Additional safety layers would naturally fall into the post-impact
phase. In our robot, this could be contacts perceived on the artificial
skin or from the force/torque sensors located in the upper arm. Such
contacts can be seamlessly integrated into the controller presented
here, making the whole framework multimodal and more robust.
At the same time, the proposed solution is not restricted to the
iCub humanoid robot and its adaptation to other platforms (with
RGB-D sensors instead of stereo cameras; without artificial skin;
with a different number of DoF etc.) would be straightforward. The
“pHRI controller” presented here is unique in that it combines a
local inverse kinematics solver with a controller in a single module.
In the future, we are planning to further extend it to enable pro-
cessing of multiple targets in Cartesian space—for different control
points on the robot body—and to couple it with a global whole-body
planner (e.g., [38]). Finally, not only static distances between the
robot and human can be considered, but both human and robot
velocities could be taken into account (as dealt with by [20] and [8]
respectively).
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