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Abstract

This paper investigates a biologically motivated model of peripersonal space through its

implementation on a humanoid robot. Guided by the present understanding of the

neurophysiology of the fronto-parietal system, we developed a computational model

inspired by the receptive fields of polymodal neurons identified, for example, in brain

areas F4 and VIP. The experiments on the iCub humanoid robot show that the

peripersonal space representation i) can be learned efficiently and in real-time via a

simple interaction with the robot, ii) can lead to the generation of behaviors like

avoidance and reaching, and iii) can contribute to the understanding the biological

principle of motor equivalence. More specifically, with respect to i) the present model

contributes to hypothesizing a learning mechanisms for peripersonal space. In relation

to point ii) we show how a relatively simple controller can exploit the learned receptive
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fields to generate either avoidance or reaching of an incoming stimulus and for iii) we

show how the robot can select arbitrary body parts as the controlled end-point of an

avoidance or reaching movement.

Terminology

PPS: Peripersonal Space

RF: Receptive Field

FoR: Frame of Reference

Root FoR: Root Frame of Reference of the iCub robot

F4: Caudal part of the Ventral Premotor Cortex

VIP: Ventral Intraparietal Area

Taxel: Tactile element of the skin (analogue to pixel)

DoF: Degree of Freedom

D: Distance from taxel

TTC: Time to contact (of stimulus with taxel)

Introduction 1

The peripersonal space is of special relevance for the life of any complex animal. When 2

objects enter the peripersonal space, they can be reached for, grasped, or be a threat, 3

evoking for example an avoidance response. Peripersonal space thus deserves special 4

attention and probably justifies the specific neural circuitry devoted to its representation. 5

The brain has to dynamically integrate information coming from several modalities: 6

motoric, visual, auditory or somatosensory. In primates, the evidence derived primarily 7

from recordings in the macaque identifies a specific fronto-parietal network of neurons 8

as the circuitry responsible for the representation of peripersonal space, as well as the 9

connection to extant behavior (e.g., [1–3]). In the frontal lobe, the principal convergence 10

locus has been discovered to be area F4 of the ventral premotor cortex [4–6] including 11

the region of the spur of the arcuate sulcus [7]. In the parietal lobe, the area most 12

strongly connected to area F4 is area VIP (Ventral Intraparietal [8]). In spite of the fact 13

that observations report the presence of auditory responses [9], in this work we leave 14

audition aside and focus instead on the integration of visual and tactile inputs. 15

A large part of peripersonal space coding can presumably be attributed to 16
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populations of polymodal neurons that, in addition to motor discharge, have tactile and 17

visual receptive fields (RFs). Visual RFs usually extend from the tactile ones in the 18

space around the respective body segment (see e.g. [4, 5]; for a review, see [1–3]). 19

Furthermore, the visual RFs are often coded in the same frame of reference (FoR) of the 20

corresponding body part and, therefore, during active or passive mobilization, they 21

move with the body part in 3D space. This suggests that motor and proprioceptive 22

information is integrated in a body-part-centered encoding. A good part of the evidence 23

coming from the monkey is presumably informative in the case of humans as well [10]. 24

Timely and appropriate object-directed actions in the peripersonal space are crucial 25

for the survival of the animal. Depending on the context, actions may constitute either 26

an approaching or an avoidance behavior. In the case of avoidance behavior, this creates 27

a “margin of safety” around the body, such as the flight zone of grazing animals or the 28

multimodal attentional space that surrounds the skin in humans [2]. An analogous 29

behavior is desirable in general-purpose robots as well, when significant interaction is 30

expected to happen in unconstrained environments. However, to date, robot controllers 31

largely concentrate on the end-point as the only part that enters in physical contact 32

with the environment. The rest of the body is typically represented as a kinematic 33

chain, the volume and surface of the body itself rarely taken into account. Sensing is 34

dominated by “distal” sensors, like cameras, whereas the body surface is “numb”. As a 35

consequence, reaching in cluttered, unstructured environments poses severe problems, as 36

the robot is largely unaware of the full occupancy of its body, limiting the safety of the 37

robot and the surrounding environment. This is one of the bottlenecks that prevent 38

robots from working alongside human partners. 39

While individual components that presumably constitute the representations of 40

space around the body can be studied in isolation using computational models in 41

simplified (for example 2-dimensional) scenarios, their interactions are difficult to model 42

without an articulated body with corresponding sensorimotor capacities and actual 43

interaction with the environment. Indeed, in animals and humans, these representations 44

are gradually formed through physical interaction with the environment and in a 45

complex interplay of body growth and neural maturation processes. Self-touch (also 46

called double-touch) is presumably one of the behaviors that impact the formation of 47

multimodal body representations. For example, “by 2-3 months, infants engage in 48
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exploration of their own body as it moves and acts in the environment. They babble and 49

touch their own body, attracted and actively involved in investigating the rich intermodal 50

redundancies, temporal contingencies, and spatial congruence of self-perception” [11]. 51

Such behaviors may initially be reflexive and controlled by spinal circuitry—the 52

wiping/scratch reflex has been demonstrated in frogs [12,13], though its existence is 53

debated in humans [14]—but progressively become more complex and voluntary. These 54

contingencies and congruences that arise occur across different motor and sensory 55

modalities, with the motor/proprioceptive and tactile starting already in prenatal stage. 56

Vision is presumably incorporated later, during the first months after birth hand in 57

hand with the maturation of the visual system (see e.g., [15]). Perhaps even later, 58

contingencies will encompass external objects (this loosely resembles the sensorimotor 59

stage of development put forth by Piaget, e.g. [16]). 60
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Table 1. Developmental milestone 1: “Bare” or “blind” double-touch.

Developmental Milestone Robotics Implementation

1a. Double-touch from body bab-

bling or mediated by reflexes. Fe-

tuses as well as infants spontaneously

contact their bodies, giving rise to

self-touch events. Correspondence be-

tween motor (how to command a limb

to touch a specific body part) and tac-

tile (cutaneous stimulation on touch-

ing and touched body part) informa-

tion are established [11,17].

Double-touch using inverse kine-

matics. In the iCub robot, we used

a solution for double-touch developed

in Roncone et al. [18]. This capitalizes

on an existing kinematic model of the

robot as well as calibration of the ar-

tificial skin with respect to a common

FoR and employs a modified inverse

kinematics solver. This solution auto-

matically encompasses different arm

1b. Invariance with respect to the

configuration of the “touched”

limb. If movement is directed to

a body part that can assume differ-

ent configurations with respect to the

body frame (e.g. arm), the infor-

mation about the current position

of this body part needs to be taken

into account—presumably using pro-

prioceptive information. Some form

of remapping of tactile information

into external (to the skin) reference

frames seems necessary (see Heed

et al. [19] for a review). Outcome:

Prediction of double-touch from mo-

tor/proprioceptive information.

configurations, since current joint po-

sitions automatically enter the kine-

matic representation. Subject to learn-

ing: As one arm approaches and even-

tually contacts another body part (the

contralateral arm in our case), the po-

sition and velocity of the approaching

arm are acquired from current joint

angle values and kinematic model of

the robot and then remapped into the

FoR of the taxels on the touched limb.

These taxels then, in parallel and in

their individual FoRs, learn a proba-

bilistic representation of the likelihood

of a stimulus—the approaching limb in

this case—contacting them.

61
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Table 2. Developmental milestone 2: Double-touch with vision.

Developmental Milestone Robotics Implementation

2a. The motor/proprioceptive information

about the position of the approaching

arm is augmented by vision. Here we as-

sume that its 3D position with respect to a

certain reference frame can be retrieved (using

stereopsis). This can then be used to develop

visuo-tactile associations able to predict incom-

ing contact based on visual information.

Visual tracking with

extraction of 3D

coordinates; head and

eye kinematics. A visual

tracker (specified in the

following sections) is used to

detect and extract

coordinates of approaching

limb into a body-centered

reference frame. A model of

eye and head kinematics

together with current joint

values are used to perform

the necessary kinematic

transformations. Further, a

gaze controller [20] is

employed to track the

approaching stimulus

(fingertip in this case).

Different limb as well as head

and eye configurations are

automatically taken into

account. Subject to learning:

Probabilistic representation

of stimuli eventually resulting

in double-touch, but this time

utilizing visual information

about the approaching limb.

2b. Invariance with respect to the configu-

ration of the “touched” limb. Similarly

to 1b, if the “touched” body part can assume

different configurations, this needs to be taken

into account in order to register the visuo-

tactile association correctly—presumably in

a reference frame centered on the body part.

Again, proprioceptive signals about limb con-

figuration can provide this information.

2c. Invariance with respect to the head and

eye configuration. The touching limb needs

to be followed in space by gaze. For correct

registration of the active limb’s position and

subsequent coordinate transformations, propri-

oceptive information about the current neck

and eyes configurations is needed (see [21,22]

regarding the role of gaze in reaching to so-

matosensory targets). Outcome: Prediction of

double-touch while extracting the position and

velocity of the approaching arm from visual

information.

62
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Table 3. Developmental milestone 3: Visuo-tactile associations pertaining to external

objects.

Developmental Milestone Robotics Implemen-

tation

3a. Tactile-visual-proprioceptive learning from

any approaching stimulus. The tactile-visual-

proprioceptive association learned in previous stage

is generalized and applied to any objects nearing

the skin. Visual perception of own approaching

body parts is substituted by detection and track-

ing of moving objects in the body surroundings.

We did not consider further stimuli approaching

the face (e.g., [23]), where expanding optic flow

fields may in fact be at use (e.g., [24]), but objects

nearing the limbs. Outcome: Prediction of con-

tact of skin parts—with own body or with generic

objects—using visual information.

Same as Milestone 2

above, but using a dif-

ferent visual perception

pipeline able to accom-

modate arbitrary objects

(detailed in the paper).

Subject to learning: Prob-

abilistic representation of

stimuli eventually result-

ing in contact with the

skin, utilizing visual infor-

mation about approach-

ing objects.

63

Table 4. Developmental milestone 4: Exploitation of learned associations.

Developmental Milestone Robotics Implementa-

tion

4a. Avoidance behaviors. Prediction of contact is

exploited to trigger coordinated avoidance behav-

iors w.r.t. either the own body (i.e. avoiding self-

collisions) or the external world (i.e. avoiding in-

coming potentially harmful objects) (e.g., [2]). Out-

come: Effective “safety margin around the body”.

Distributed avoidance

/ catching controller.

Taxels with activation

above a certain threshold

contribute to a resulting

movement vector that is

executed by a Cartesian

controller. The avoidance /

reaching differs only in the

direction of the final

movement vector.

4b. “Reaching” with arbitrary body parts be-

haviors. The peripersonal space representation

facilitates actions toward nearby objects, allowing

to reach for them with any body part. Outcome:

reaching actions with arbitrary body parts.

64
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This simplified developmental timeline constitutes the skeleton of our work in the 65

humanoid robot. The humanoid in question is the iCub, a child robot designed to 66

support studies on artificial cognitive systems [25]. The iCub has a human-like 67

morphology and a subset of the sensory capacities of the human body. Lately, it has 68

been equipped with a set of tactile sensors [26], which provide information about local 69

pressure upon contact with an object or, generically, any part of the environment. We 70

are concretely in the position of studying how motor-proprioceptive-tactile and 71

visuo-tactile associations are developed via an artificial learning process. The robot can 72

and will therefore establish a margin of safety by interacting with its own body and the 73

environment, extending its cutaneous tactile surface into the 3D space surrounding it. 74

An overview of the developmental timeline is provided in Tables 1–4, with putative 75

developmental milestones in the left column and their robotic counterparts on the right. 76

The robotics implementation departs in many respects from the mechanisms that 77

presumably operate in the primate brain. The correspondence between biology and 78

robotics is often established at a behavioral level rather than in the details of the 79

implementation. In particular, for mostly practical reasons, we assume that the robot’s 80

kinematics and mapping of tactile information into reference frames is given. The 81

implementation of the double-touch behavior itself (from [18]) is taken as a primitive. 82

Conversely, learning/calibration of the spatial receptive fields around individual taxels is 83

primarily addressed here and relates to biology. 84

Building on the developmental pathway outlined above, we model peripersonal space 85

on a humanoid robot equipped with full-body tactile sensors. Our model keeps in 86

register each “spatial” visual RF to a taxel (tactile element) of the robot’s skin. 87

Starting from an initial “blank slate”, the distance and velocity of a stimulus entering 88

any given RF is recorded, together with information on whether the object had 89

eventually contacted the selected tactile element. Distance and velocity of the stimulus 90

are measured with respect to each taxel, in real time and in parallel. In this model, RFs 91

are proxies for the neural responses, each of them represented by a probability density 92

function. Probabilities are updated incrementally and carry information about the 93

likelihood of a particular stimulus (e.g. an object approaching the body) eventually 94

contacting the specific taxel at hand. We use the distance to the taxel and its time to 95

contact (distance/velocity) to compactly identify the stimulus in a bi-dimensional 96
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parameter space. 97

For learning probabilities, we explore two stimulation modalities: i) self-touch and, 98

more generically, ii) objects moving toward the body surface. In the first case, the 99

stimulus is generated autonomously by the robot—for example, a finger touching the 100

contralateral arm. The robot executes self-touching behaviors and uses proprioceptive 101

signals to measure the approach kinematics, which in turn constitute the training set to 102

estimate probability densities. In the second modality, stimuli are generated by any 103

object in the vicinity of the body surface and perceived visually and through its contact 104

with the skin. 105

There are a number of computational models addressing phenomena related to 106

peripersonal space representations. A major component of many of them is coordinate 107

transformations, which seem inevitable in order to code visual information in body-part 108

centered FoRs; this has been investigated extensively and several connectionist models 109

have been proposed (e.g., [23, 27,28]). On the other hand, Magosso et al. [29] took FoR 110

transformations for granted and focused on the mechanisms of tactile and visual 111

interaction. They proposed a neural network that models unimodal (visual and tactile) 112

and bimodal representations of an imaginary left and right body part and demonstrated 113

a number of phenomena reported in humans (e.g. tactile extinction). Some of the 114

studies targeting body schema and peripersonal space representation models were 115

reviewed in Hoffmann et al. [30]. Since platforms with tactile sensing are rare, most of 116

the work has focused on the interaction of visual and proprioceptive information (in 117

robotics typically equated with joint angles from encoders). For example, Antonelli et 118

al. [31, 32] developed models in different humanoid robots, focusing mainly on 119

peripersonal space in the sense of space within reach and the visual aspects thereof. A 120

number of embodied models were also developed by Asada and colleagues. Hikita et 121

al. [33] used a humanoid robot and employed a bio-inspired architecture (self-organizing 122

maps, Hebbian learning, and attention module) to learn the visual receptive field 123

around the robot’s hand and its extension when using a tool—inspired by the behavior 124

of the “distal” type neurons reported by Iriki et al. [34]. Touch was only emulated and 125

used to trigger the visuo-proprioceptive association. Finally, most related to our 126

approach, Fuke et al. [35] used a simulated robot touching itself on the face to model 127

the putative mechanism leading to the visual and tactile response properties of neurons 128
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in the ventral intraparietal area (VIP). A hierarchical architecture with visual, 129

proprioceptive and tactile modality was used. After learning, as the robot’s hand 130

approached its face, contact with the skin could be predicted. 131

In robotics, safe interaction, especially when involving humans, is a crucial need of 132

future assistive machines. There is necessity for technologies that allow robots to acquire 133

some form of “whole-body” and “nearby-space” awareness. Traditionally, a significant 134

body of work has been produced in the context of obstacle-avoidance planners, able to 135

compute safe end-effector trajectories off-line if provided with complete knowledge of a 136

static environment and a precise kinematic model. These approaches fall short in 137

presence of modeling errors or when environments change dynamically. To this end, the 138

classic planning techniques had to be complemented by reactive strategies such as the 139

potential field approach [36]. More recently, frameworks taking the whole occupancy of 140

a robot body into account have appeared: Flacco et al. [37] proposed a motion 141

controller with online collision avoidance for both end-effector and the manipulator 142

body; Frank et al. [38] proposed a modular framework (MoBeE) where a planner can be 143

overridden by a reactive controller. Still, the performance of systems relying on distal 144

sensing (such as from cameras or depth sensors) degrades if the perception of the 145

environment is not reliable or the model of the robot kinematics inaccurate. A feedback 146

loop that is as close as possible to the interaction itself is needed. 147

In recent years, tactile systems have been proposed as a way to close the loop 148

precisely where the interaction occurs. However, the lack of suitable platforms limits 149

research in this direction: although diverse tactile sensing technologies have been 150

developed (see [39] for a review), robots with whole-body tactile sensing have been 151

mostly unavailable. Alternative solutions relied on force/torque sensing and impedance 152

control schemes that ensure compliant behavior of the platform on contact (e.g., [40]). 153

Shimizu et al. [41] used force/torque feedback together with encoder information to 154

develop self-protective reflexes and global reactions for the iCub robot. Distributed 155

sensing over the whole surface of a robotic manipulator was used by Mittendorfer and 156

Cheng [42]. Utilizing information from accelerometers from their multimodal “skin” 157

during a motor exploration phase, the direction of movement of every sensory unit in 158

response to every motor could be learned. Activations of infra-red distance sensors on 159

the same sensory unit could then be used to trigger local avoidance reflexes to 160
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approaching objects. Finally, Jain et al. [43] devised a controller that allows for reaching 161

in clutter while taking into account multiple contacts and keeping the forces within set 162

limits. The solution was verified on a robot featuring a tactile-sensitive forearm. 163

However, solutions combining interaction-based and contact-less (distal sensing) 164

approaches are rare ( [44] being a notable exception). This is where our work exploiting 165

visual and whole-body tactile information ties in. 166

In this work, we set forth to implement a model of peripersonal space that includes 167

self-tuning abilities in the form of learning from examples. Specifically, we do not model 168

the acquisition of the FoR transformations but rather we focus only on the construction 169

of the responses of the RFs. We build on our previous work [45], where we presented a 170

simplified version of the model dealing solely with approaching external objects and 171

registering their distance. Here we extend this work by presenting a complete 172

developmental timeline, in which examples are first collected through self-exploration or 173

self-touch, resulting in concurrent motor-tactile and visuo-tactile stimulation of different 174

areas of the body. This is then complemented by external approaching objects. 175

Furthermore, the RFs’ representations take into account the time to contact of the 176

incoming stimulus. Finally, the acquired RFs are used in a controller to implement 177

avoidance and reaching behaviors thus implicitly testing their performance. 178

This article is structured as follows. In the Results section, the properties of the 179

proposed model are first verified in simulation (Section Learning in a single taxel model) 180

and then on the iCub (Section Learning in the real robot). Finally, the peripersonal 181

space representation is used to generate avoidance as well as “reaching” behavior using 182

arbitrary body parts of the robot (Section Exploitation of the learned associations). 183

This is followed by Discussion and Conclusion, which contains a summary, limitations of 184

the model and future work. A detailed description of the experimental setup and the 185

proposed computational model is presented in Section Materials and Methods. 186

Results 187

Results from four different experimental scenarios are reported (we refer the reader to 188

Tables 1–4 above for an overview of the developmental timeline). First, the behavior of 189

the proposed representation is studied in a simulated single taxel model (Section 190
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Learning in a single taxel model). Second, we demonstrate how the robot can learn 191

tactile-motor and tactile-visual representations via a double-touch scenario and by 192

tracking arbitrary objects as they near the skin. Finally, the utility of the learned 193

representations is demonstrated in the avoidance and reaching scenario that exploits the 194

tactile-visual representations learned previously. The source code has been released 195

online with an open source license and it is readily available for any iCub robot [46]. All 196

the relevant data and scripts needed to reproduce the results shown are accessible at the 197

public repository [47]. 198

Representation of “Space Around the Body” 199

We have chosen a distributed representation whereby each taxel learns a collection of 200

probabilities regarding the likelihood of being touched by a moving object. The 201

physiology of the observed neural RFs suggests that their extension in space is 202

modulated by the speed of the incoming stimulus. In addition, the relative position of 203

the stimulus with respect to the receptive field (RF) clearly determines the activation 204

strength of a given neuron. Inspired by these considerations we define a parameter 205

space of two variables: (i) distance from the taxel D; (ii) time to contact TTC. TTC is 206

calculated from the distance D and velocity of the incoming stimulus. Fig 1 illustrates 207

the receptive field around one taxel of the forearm and the two main scenario types: 208

self-touch and an external object approaching toward the body. D and TTC can be 209

calculated in the reference frame of each taxel. Practically, this is possible because of 210

the existing calibration procedure of the robot skin due to del Prete et al. [48] and a full 211

model of the robot’s kinematics derived from CAD data, including the head and 212

eyes [49]—as detailed in the Experimental Setup Section. For stimuli perceived visually, 213

additional processing involving stereo vision is required. In fact, any observation is 214

mapped into the iCub Root FoR (located around its waist) and subsequently 215

transformed to the reference frames of individual taxels. It is important to note that 216

measurements are affected by parametric errors in addition to their intrinsic 217

measurement noise (the modeling errors are discussed in detail in Section Kinematic 218

model and coordinate transformations). The effect of modeling errors can be, for 219

example, that stimuli that are in physical contact with the skin can be perceived as 220
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Fig 1. Illustration of the setup of different scenarios. (left) Receptive field

above one of the left forearm taxels. (middle) iCub double-touch behavior with a

simplified schematic of the kinematics and joint angles. (right) An object approaching

the left forearm.

seemingly penetrating the robot surface when employing a sequence of coordinate 221

transformations using the kinematic model and current joint angle measurements. 222

Subsequently, this results in a negative measure of distance D with respect to the taxel 223

surface normal. Conversely, if the errors bring about an offset in the opposite direction, 224

an actual contact on the robot’s skin may correspond to a perceived positive distance. 225

Our training data will be affected systematically by these errors which reflect on the 226

estimated probability densities. 227

Learning in a single taxel model 228

The properties of the learning procedure as well as the proposed representation are 229

investigated in a single taxel model (as specified in Section Monte Carlo simulation of a 230

single taxel). The results from 500 iterations of the simulation—500 objects being 231

“thrown” toward the taxel—are illustrated in Fig 2. They show the representation of the 232

“probability density” (it is not a real probability density – see Section Internal 233

representation) after learning and smoothing using the adapted Parzen window method: 234

the full landscape on the left and its projection in 2D with color coding (the probability 235

of contact) on the right. A clear “ridge” can be seen in both plots, which corresponds to 236

the trajectories of objects as they approach the taxel and both D and TTC are 237

decreasing. The contact with the taxel occurs at both D and TTC equal to 0. 238

In a second simulation, in order to better approximate the experimental conditions 239
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Fig 2. Representation learned in single taxel model. D and TTC estimated

from distance and velocity of the object. (Left) Full 3D graph of the representation.

The z−axis is given by the activation—estimate of the probability of object eventually

landing on the taxel. (Right) 2D projection; third dimension preserved in the color

map.

encountered by the real robot, two additional features are added to the model. First, 240

Gaussian noise is added to the measurement of position and velocity (and hence D and 241

TTC). Second, we account for the fact that the object position and velocity 242

measurements in the real robot are subject not only to random, but also to systematic 243

errors. In particular, in both tactile-motor (double-touch) and tactile-visual scenarios, 244

the coordinate transformations needed to map the approaching object to the FoR of 245

individual taxels rely on the model of the robot kinematic structure and its visual 246

system, which are subject to errors (see Section Kinematic model and coordinate 247

transformations). To clearly demonstrate the effect of this on the representation, we 248

introduce a significant systematic offset (−10cm) to the simulation. The results for this 249

configuration—noise and systematic error—can be seen in Fig 3. The Gaussian noise 250

results in an overall broader profile of the activation landscape. The offset can be 251

clearly seen in the distance axis, with the “ridge” of high activations cutting the x−axis 252

in the negative domain. 253
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Fig 3. Representation learned in single taxel model with noise and

systematic error (−10cm offset). See text for details.

Learning in the real robot 254

The proposed method is then tested in a real-world setup where real, physical stimuli 255

approach the iCub’s skin. We investigate the learning of peripersonal space 256

representations in three scenarios corresponding to the putative developmental 257

milestones as discussed in the Introduction. Initially, learning involves exclusively tactile 258

and motor signals (cf. Table 1) as induced by self-touching behaviors (Section 259

Tactile-motor learning: double-touch). In the second phase—Section Tactile-visual 260

learning from double-touch, visual information replaces motor information about the 261

“touching” arm (corresponding to Table 2). Finally, this approach is generalized to any 262

incoming external stimulus that contacts the skin (Table 3) in Section Tactile-visual 263

learning using external objects. An overall comparison of the representations learned in 264

the different scenarios as well as an analysis of the learning process for two adjacent 265

taxels is shown in Section Interim discussion on learning in the real robot. 266

Table 5 provides a quantitative overview of the data sets collected in the three 267

scenarios. In every case, the skin parts involved are listed, along with the experimental 268

time elapsed, number of trials (i.e. the number of independent stimuli nearing the 269

robot’s skin), and total number of samples (an average of 37 samples per trial were 270

recorded). The movements were directed toward the internal part of the left forearm in 271
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Table 5. Learning in the real robot. Comparison between three experimental

sessions performed on the iCub robot. For each session and each body part under

consideration, the elapsed time in minutes (ET), the number of trials (#T), and the

total number of input samples (#S) are shown. See text for details.

Experiment

Body Part

Left Forearm (internal) Left Forearm (external) Right Hand

ET[min] #T #S ET[min] #T #S ET[min] #T #S

Tactile-motor 31 82 3512 – – – – – –

Tactile-visual
30 45 1166 – – – – – –

(double-touch)

Tactile-visual
23 53 1886 17 34 1348 44 77 2833

(ext. objects)

all the scenarios—this skin region facilitates the self-touch behavior in the robot—with 272

the same 8 taxels subject to learning. In addition, to demonstrate the generality of the 273

approach, the outer part of the left forearm (4 taxels) as well as the right hand (skin on 274

the palm, 4 taxels) were targeted in the tactile-visual scenario with external objects. 275

It is worth noting that the data collection and learning process was fast (summing 276

up to 142 minutes for all the experiments reported together). In fact, even a single 277

positive (i.e. touch of the skin) trial gives rise to a usable representation (cf. Fig 9 278

below). This is considered a significant merit of the proposed approach, since the 279

algorithm can be used on-line and in real-time without an a priori batch learning 280

session: the peripersonal space representations immediately provide prior-to-contact 281

activations and are then refined over time. The smoothing approach used (Parzen 282

window applied to the discrete domain) is specifically responsible for this in the context 283

of undersampled spaces. 284

Tactile-motor learning: double-touch 285

The first experiment on the real robot deals with the developmental milestone described 286

in Table 1—“bare” or “blind” double-touch. In this experiment, we used the controller 287

developed in Roncone et al. [18]. The robot is stimulated by touching it on the forearm; 288

see Fig 1 (middle) for a schematic illustration. A modified inverse kinematics solver and 289

controller finds a solution whereby the contralateral fingertip touches the stimulated 290

taxel, and commands both arms to the respective pose (note that the taxel eventually 291
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touched by the robot may differ from the one that was initially stimulated because of 292

the systematic errors). Importantly, the robot configuration may differ at each trial, 293

depending on the inverse kinematics solution found by the solver. After the 294

double-touch event, a buffer is used for data collection and learning as explained in 295

Section Data collection for learning. That is, the kinematic model and the joints 296

configuration at every time step are used to convert the position of the tip of the index 297

finger (the approaching body part) to the FoRs of the taxels on the approached and 298

eventually touched part. Unfortunately, only a subset of the skin is physically reachable 299

by the robot—some configurations are kinematically not feasible or unsafe. Therefore, 300

for our experiments, we selected eight taxels (as explained in Section Artificial skin) on 301

the inner part of the forearm for which the double-touch behavior was triggered. These 302

eight taxels updated their representations in parallel using the distance and expected 303

time to contact as the contralateral finger was approaching. As detailed in Table 5, 304

there were 82 successful double-touch trials, with a total of 3512 training samples. That 305

is, there were 82 trajectories sampled at T = 50ms that resulted in a contact with the 306

selected area of the skin. From the eight taxels considered, only six were actually 307

touched at least once by the contralateral index finger. In all of them, the results after 308

learning were qualitatively similar and matched the predictions of our model. The 309

results for one of the taxels with the largest number of training samples (taxel nr. 2; 310

1625 samples) are shown in Fig 4 and, in fact, they demonstrate learning of a 311

tactile-motor margin of safety: i.e. prediction of self-collisions in the absence of visual 312

input. No offset in the position is reflected in the learned representation, indicating that 313

the model of the kinematic loop connecting the two arms was reasonably accurate. 314

Tactile-visual learning 315

With respect to visual learning, two experiments were performed: (i) the double-touch 316

scenario was repeated, but in this case, utilizing visual input rather than the “motor” 317

information of the moving arm (corresponding to the milestone in Table 2); and (ii) 318

independently moving objects nearing the robot’s body were used (Table 3). In both 319

cases, the stimulus (robot fingertip or the moving object) was detected, tracked and its 320

trajectory prior to contact recorded. The position and velocity of the stimulus was 321
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Fig 4. Tactile-motor representation learned in the double-touch scenario.

Results for taxel nr. 2 on the inner part of the left forearm. See text for details.

extracted and remapped first into the iCub Root FoR and eventually into the FoR of 322

individual taxels, yielding the [D,TTC] pairs used for learning the representation of 323

nearby space in the corresponding taxels. 324

Tactile-visual learning from double-touch. For this variant of the 325

scenario—double-touch with the moving finger perceived visually—we added a small 326

colored marker to the fingertip that was commanded to execute the double-touch 327

movement. The method to extract the finger’s coordinates is described in Section Visual 328

processing and gaze control—“Tracking of fingertip with colored marker”. The learning 329

procedure was exactly the same as in the double-touch scenario described earlier. We 330

performed 45 trials. The results show a similar pattern to the previous case; the same 331

taxel (nr. 2; 376 samples) on the inner forearm is selected for illustration in Fig 5. 332

Tactile-visual learning using external objects. This case is a generalization of 333

the double-touch experiments whereby the stimuli are generated by visually perceiving 334

an approaching object that eventually touches the body surface. In this session, 335

tactile-visual trials are carried out by a human experimenter that manually approaches 336

the robot’s skin with a series of objects. The visual processing pipeline is explained in 337

Section Visual processing and gaze control—“Tracking of generic objects”. This setup 338
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Fig 5. Tactile-visual representation learned in double-touch scenario.

Results for taxel nr. 2 on the inner part of the left forearm. See text for details.

was validated using two objects, a cube and a small ball (see Fig 6), approaching the 339

taxels on the robot’s body. Importantly, we were no longer limited to parts of the skin 340

that can be activated in the self-touch configurations. We have extended learning to the 341

outer part of the left forearm as well as palm of the right hand. 342

On the inner part of the left forearm, the same eight taxels of the previous scenarios 343

were considered. Additionally, four taxels on the outer part of the forearm and four 344

taxels of the right palm (see Fig 12 right) were also stimulated. We conducted a total of 345

53 trials for the inner part of the left forearm (events from both objects together), 34 346

Fig 6. Objects approaching right palm. (Left) Cube. (Right) Small ball.
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Fig 7. Tactile-visual representation learned from oncoming objects. (Left)

Inner part of left forearm (taxel nr. 2). (Middle) Outer part of left forearm (taxel nr.

8). (Right) Right hand (taxel nr. 2). See text for details.

trials for the outer part of the forearm, and 77 trials for the right hand. The results are 347

shown in Fig 7 with the inner part of the left forearm on the left (627 samples, taxel nr. 348

2), the outer part in the center (451 samples; taxel nr. 8), and right hand on the right 349

(944 samples; taxel nr. 2; taxel marked in red in Fig 12 right). 350

Interim discussion on learning in the real robot 351

Comparison of representations learned in different scenarios. The 352

experimental results detailed in the previous sections show comparatively similar 353

outcomes for the representations learned on the same taxel (taxel nr. 2 of the internal 354

part of the left forearm) subject to the different experimental conditions (tactile-motor, 355

tactile-visual with double-touch and tactile-visual with external objects). However, 356

there are some differences that are worth mentioning. Specifically, the representation 357

learned in the tactile-motor scenario (Fig 4) shows a “crisper” landscape, which 358

becomes progressively less defined in the subsequent sessions (Figs 5 and 7). This result 359

is expected: as we demonstrated in Section Learning in a single taxel model, an increase 360

of the noise in the input signal as well as in the variability of the stimulation results in a 361

broader profile of the activation landscape (see Fig 2 vs. Fig 3). The double-touch 362

(tactile-motor) scenario is a highly controlled setup in which the robot performs a 363

number of similar trials with similar velocity profiles, using an inverse kinematics solver 364

and controller. By reducing reliance on the kinematics, and progressively depending on 365

an intrinsically noisy sensory system (i.e. the visual system), the contribution of noise 366

becomes more prominent. Further, training trials for the tactile-visual learning with 367
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external objects are performed by a human experimenter, with little control on the type 368

of trajectories that are presented to the robot, resulting in a broader landscape of the 369

probability function. 370

Comparison of representations learned by different body parts. In the 371

Tactile-visual learning using external objects scenario, three different skin parts were 372

subject to training: internal and external part of the left forearm, and the right hand 373

(palm). Representations learned around selected taxels were shown in Fig. 7. Here we 374

look at aggregate statistics of all the taxels for each of the skin parts. We postulate that 375

a significant component of the systematic error pertaining to a taxel is skin part specific 376

and can be mainly attributed to the position on the kinematic chain (e.g. forearm vs. 377

hand) and the mounting of individual skin patches (see Fig. 12 left). In order to 378

validate this hypothesis, we extrapolate the systematic offset of the ten virtual taxels 379

that were stimulated during the experimental session and analyze the overall trend 380

between different body parts. To this end, we performed a weighted orthogonal 2D 381

least-squares regression, with [x, y] coordinates given by [D,TTC], and weights equal to 382

the learned representation at each of the pairs (i.e. the contact probability, 383

f(Di, TTCj), see Eq. 3 under Internal representation). A weighted 2D regression 384

applied to the 3D landscape reduces the dimensionality of the input space, and lets us 385

evaluate at which distance D the regression line crosses the x−axis (i.e. 386

TTC = 0)—giving the offset pertaining to the position of the particular taxel. Results 387

are depicted in Fig 8: most of the taxels show an overall error between 1cm and 3cm, 388

with an average error of 2.11cm and 1.73cm for the inner and outer part of the left 389

forearm respectively, and 1.16cm for the right palm. The results suggest that the 390

systematic errors depend on the specific skin part the taxels belongs to, even though 391

additional “intra-skin-part” variance is present. Importantly, the learned 392

representations automatically compensate for these errors as will be demonstrated later. 393

Analysis of the learning progress. As mentioned in Section Learning in the real 394

robot, one of the features of the model is the ability of each taxel to learn a usable 395

representation very quickly, from a few training samples. This is a direct consequence of 396

the smoothing approach (Parzen windows applied to the discrete representation) for 397
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Fig 8. Systematic offsets computed during tactile-visual learning using

external objects. The distance offset in the learned representation of ten taxels (three

on the inner part of the left forearm, FALi; three on the outer part, FALo; four in the

right palm, PR) is depicted in red. For each of the three body parts under

consideration, average offset and standard deviation are depicted in blue.

undersampled spaces. To illustrate this, in Fig 9 we show the evolution of the 398

representations belonging to two neighboring taxels in the internal part of the left 399

forearm during tactile-visual learning with external objects. Starting from a blank state 400

for both taxels, we depict the representation after the same “positive” example (i.e. the 401

nearing object contacted both taxels), after 4 examples (combination of positive and 402

negative trials), and after the full training of 53 examples. 403

The results show how the same input trial (approaching stimulus) affects each taxel 404

differently, because it gets projected on each taxel’s FoR in a slightly different manner. 405

After the first trial, there is a clear bias toward the only experience the taxels had (the 406

lack of negative examples practically translates into maximal certainty of collision 407

prediction for some parts of the input space). Nonetheless, although the representations 408

are far from being comparable to their respective final versions, even with a single 409

(positive) example they can be already used for a coarse estimation of the probability of 410

being touched by future incoming objects. Finally, after the full training session, the 411

respective landscapes of the two adjacent taxels show similarities in both their shapes 412

and offsets. Yet, taxel nr. 4 exhibits stronger responses over its landscape, which is a 413
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Fig 9. Evolution of the learning process. The progress of the learned

representations belonging to two adjacent taxels of the internal part of the left forearm

is shown. For each of the two taxels (taxel nr. 3 on the left column and taxel nr. 4 on

the right column), snapshots of their respective representations after 1, 4 and 53 trials

are depicted. See text for details.

PLOS 23/50



consequence of the fact that taxel nr. 3 is positioned closer to the robot’s wrist and it is 414

thus less likely to be contacted and to experience positive trials. This illustrates the 415

effect of the individual taxel’s training on the learned representation, which is further 416

shaped by the embodiment—the taxel’s physical placement in this case. 417

Exploitation of the learned associations 418

The learned representation is validated during an avoidance/reaching experimental 419

session, corresponding to the last milestone: exploitation of learned associations (Table 420

4). The robot uses the acquired model in order to either avoid or come into contact with 421

an incoming stimulus with any of the skin parts that have a peripersonal RF. Similarly 422

to the learning stage, experiments are conducted by presenting the robot with a series of 423

stimuli. An approaching object thus triggers the activation of each taxel given by the 424

taxel’s previous “experience” with similar stimuli (in terms of [D,TTC]). Consequently, 425

this gives rise to a distribution of activations pertaining to the skin surface. It is 426

important to note the following: i) the iCub built up a PPS representation based on 427

stimuli that are directed toward the skin; ii) in order to test these representations, we 428

exploit a similar scenario, in which the robot has to either move away from or reach for 429

approaching objects. Static objects (or objects that are moving away from the robot) 430

do not trigger a response from the PPS representation and hence do not generate any 431

movement, which is desirable and in accordance with neurophysiological data on 432

approaching vs. receding stimuli (see e.g., Graziano and Cooke [2]). 433

The iCub is presented with an unknown object that was not used in the learning 434

stage (a pink octopus). It is used by the experimenter to perform a series of 435

approaching behaviors toward the robot’s body parts that had previously learned their 436

representations (left forearm and right hand). The visual processing pipeline used was 437

identical to the learning stage (see Section Visual processing and gaze control). 438

However, here, the taxels’ activations are exploited by the robot to either avoid or 439

“reach for” the approaching object with any of the body parts used during learning. 440

Only taxels with activation above a certain threshold contributed to the resulting 441

movement vector that was eventually executed by the controller. The threshold was 442

empirically set to 0.4, corresponding to a 40% chance of that taxel being contacted by 443
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the nearing object (according to the learned model). In order to achieve the desired 444

behavior, we implemented a velocity controller that can move any point of either the 445

left or right kinematic chain of the arms in a desired direction. During an avoidance 446

task, the movement is directed away from the point of maximum activation, along the 447

normal to the local surface in that point. For “reaching”, the desired movement vector 448

has the opposite direction. The setup of the controllers is described in Section 449

Avoidance and reaching controller. 450

Margin of safety: Avoidance behavior demonstration. To demonstrate the 451

performance of the avoidance behavior, we conducted an experimental session of 452

roughly 20 min. in duration where we performed a series of approaching movements 453

with a previously unseen object, the octopus toy, alternating between the body parts 454

and varying the approaching direction. Avoidance behavior was successfully triggered in 455

all cases. A snapshot illustrating typical behavior in a 15s window for the left forearm 456

(Fig 10 left) and a 20s window for the right palm (Fig 10 right) is shown—with two 457

approaching events in each plot. In total, nine taxels of the left forearm (six on the 458

inner part; three on the outer part) and three taxels of the right palm were considered. 459

The top plots show the distance of the approaching object from the individual taxels (in 460

their respective FoRs). The bottom plots show the activations of the learned 461

representations for each taxel (note that this representation uses a two-dimensional 462

domain of [D,TTC]; however, to demonstrate the behavioral performance, we restrict 463

ourselves to showing distance only in the upper plot). As the object comes closer, there 464

is an onset of activation in the “most threatened” taxels. Once the activation level 465

exceeds a predefined threshold (0.4 in this case – horizontal line in the bottom panels), 466

the avoidance behavior is triggered. This is illustrated in the top plots with the shaded 467

purple area that marks the velocity of the body part as a result of the avoidance 468

controller command. The first taxel responding is highlighted in the corresponding 469

upper and lower plots. The upper plots clearly demonstrate that the avoidance behavior 470

was effective: a safety margin has always been preserved. Qualitatively similar behavior 471

was observed during the whole experimental session. The controller takes advantage of 472

the distributed representation pertaining to individual taxels, averaging the expected 473

contact locus as well as its likelihood. This loosely resembles the way noisy information 474
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Fig 10. Avoidance demonstration. (Left) Object approaching the inner part of

left forearm. Nine taxels of the left forearm (six on the inner part, FALi 1 : 6; FALi

stands for forearm left internal; three on the outer part, FALo 1 : 3) were considered in

the experiment. Top plot shows the distance of the object from the taxels in their

individual FoRs. The shaded purple area marks the velocity of the body part (common

to all taxels; maximum activation corresponding to 10cm/s). Bottom plot depicts the

activations of the forearm taxels’ PPS representations. (Right) Object approaching the

right palm. There were three taxels considered (PR 1 : 3, where PR stands for “palm

right”).

is averaged in neural population coding schemes (e.g., [50]). 475

“Reaching” with arbitrary body parts. In a similar fashion, we tested the 476

“reaching” controller in a session of approximately 10 min. in duration. Note that this is 477

“reaching” not in a traditional sense of reaching with the end-effector—the hand. Instead, 478

the particular skin area most likely to collide with the stimulus will be recruited to 479

“reach” or “catch” it. A snapshot illustrating the performance while approaching the 480

inner part of left forearm is shown in Fig 11. The graphical illustration is the same as in 481

the avoidance case. The spatial representations pertaining to the taxels get activated 482

(bottom plot) and trigger the movement, which in this case is approaching the object. 483

In addition, the bottom plot illustrates the physical skin activation (green shaded area). 484

Importantly, contact is generated in both cases as the skin activation testifies. The fact 485

that the distance is greater than zero in the first event can be attributed either to errors 486
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Fig 11. Reaching with arbitrary body parts demonstration. Object

approaching the inner part of left forearm. Nine taxels of the left forearm (six on the

inner part; three on the outer part) were considered in this experiment. Top plot shows

the distance of the object from the taxels in their FoRs. The shaded purple area marks

the velocity of the body part due to the activation of the controller. The bottom plot

depicts the activations of the forearm taxels’ representations. The green shaded area

marks physical contact with the robot’s skin—aggregated activation of all tactile sensors

contacted on the body part.

in the visual perception or to an offset in the kinematic transformations. 487

Joint space and operational space range. During tactile-motor and tactile-visual 488

training using “double-touch”, the robot controls both arms to satisfy the self-touch 489

constraint, thus automatically attaining different—even if somewhat stereotypical—arm 490

configurations. Conversely, the tactile-visual learning using external objects was 491

performed in a static configuration—the robot is passively waiting for external objects 492

to contact the skin. Nonetheless, exactly the same software is used in all cases, since it 493

automatically handles any configuration. The robustness of our approach to different 494

arm configurations is even more evident in the subsequent exploitation of the learned 495

associations, which involved the richest repertoire of configurations. The movement 496

response is always different, depending on where the object is coming from and which 497

portion of the peripersonal space representation is activated the most. To illustrate the 498
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range of different configurations, we have extracted in Table 6 the extremes reached by 499

individual DoFs. It is evident how most of the joints actively involved in the movements 500

(the shoulder joints and the elbow) have spanned a large portion of their range, with 501

some of them even covering all of their operational range. In addition, we quantified the 502

range of the end-effectors in the operational space (see Table 7, with further details 503

provided in S1 Fig). For safety reasons, the range of the end-effectors during the 504

experiment was artificially restricted to be confined to a sphere of radius 0.2 m around 505

the home position. Also, note that the data was recorded only while the peripersonal 506

space representation was active—i.e. while activations were exceeding a threshold. In 507

summary, this demonstrates that the representations learned were robustly activated in 508

a wide range of joint configurations and end-effector positions. 509

Table 6. Range of arm DoFs during avoidance and reaching. Each of the 7

DoFs that belong to the left and right arms are depicted: 3 DoFs for the shoulder (s0,

s1, s2), one elbow joint (e0) and three joints pertaining to the wrist (w0, w1, w2). For

each joint, its minimum and maximum angles are shown, along with its range. Joints s2

and e0 of the left arm, as well as joint s2 of the right arm, reached their full physical

limits during the experiments. Wrist joints did not contribute to either the avoidance or

the reaching behaviors.

Left Arm [deg]

s0 s1 s2 e0 w0 w1 w2

Min -65.0 19.5 -39.2 16.3 -0.88 -0.015 -0.025

Max 7.1 64.2 80.1 106.0 1.38 0.064 0.063

Range 72.1 44.7 119.9 89.7 2.26 0.079 0.088

Right Arm [deg]

s0 s1 s2 e0 w0 w1 w2

Min -61.7 18.6 -37.8 15.5 -1.57 -0.079 -0.085

Max 7.9 45.5 80.7 80.5 0.86 0.111 0.159

Range 69.5 26.8 118.5 65.0 2.43 0.190 0.244

Comparison with model without TTC information. In this section, we 510

compare the proposed approach with our previous work [45]. In particular, in this work 511

we benefit from a richer representation because of the introduction of the 512
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Table 7. End-effector extremes in operational space during avoidance and

reaching. For both the left and right end-effectors, the minimum and maximum values

reached in the x−, y− and z− axis are shown, along with its range of operation. For

safety reasons, the operational space of the robot was constrained within a sphere

centered in the resting position (set to [−0.30,−0.20,+0.05] m for the left arm and

[−0.30,+0.20,+0.05] m for the right arm – in iCub Root FoR) and with radius equal to

0.2 m. Please refer to S1 Fig for a depiction of the robot’s kinematics during the

avoidance and reaching scenario.

Left End-Effector [m]

x y z

Min -0.34 -0.39 -0.06

Max -0.18 0.00 0.15

Range 0.15 0.40 0.22

Right End-Effector [m]

x y z

Min -0.34 0.06 -0.03

Max -0.19 0.36 0.10

Range 0.15 0.29 0.13

time-to-contact (TTC) dimension. Although this results in a more complex model and 513

the need to increase the number of training samples in order to converge to a stable 514

representation, we believe that the information carried out by the TTC is crucial in the 515

construction of a model of nearby space that is meaningful and effective in a real world 516

scenario. Specifically, by including dynamic information about the speed of the 517

approaching object, the proposed model can easily distinguish which objects pose an 518

immediate threat to the body. To make a practical example, the TTC of a close but 519

static object would be infinite, whereas it would be negative for an object that is 520

moving away from the skin; in both cases, such objects would be easily discarded 521

because they would not fall within the boundaries of our representation, which considers 522

objects with a TTC included in the range [0; 3s]. The exploitation of this feature can be 523

demonstrated by comparing the avoidance and “reaching” controllers in this work 524

and [45]. Without loss of generality, in the following we compare only the avoidance 525

behaviors, although similar conclusions can be drawn by analyzing the “reaching” with 526

arbitrary body parts controllers. Fig 10 shows how the taxel of interest is activated only 527

when the object is approaching it, i.e. when its distance decreases over time. When the 528

object is moved away by the experimenter (approximately at t = 64s and t = 71s in Fig 529

10 left), the taxels become silent and the avoidance behavior stops. A comparison with 530
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previous work—see S2 Fig—, instead, shows how this is not the case if only the distance 531

is taken into account: the taxels’ activation fades completely only if the object moves 532

away enough to fall out of the receptive field, i.e. farther than 20cm from the skin. 533

Discussion and Conclusion 534

In this paper, to the best of our knowledge, we presented the first robot that learns a 535

distributed representation of the space around its body by exploiting a whole-body 536

artificial skin and either self or environment physical contact. More specifically, each 537

tactile element has been associated to a spatial receptive field extending in the 3D space 538

around the skin surface. Stimuli in the form of motor or visual events are detected and 539

recorded. If they eventually result in physical contact with the skin, the taxels update 540

their representation tracing back in time the approaching stimulus and increasing the 541

quality of the internal probability estimate—in terms of distance and time to 542

contact—that is, an estimation of the likelihood that the stimulus eventually touches 543

any given body part. The spatial RF around each taxel is constructed and updated as 544

the limbs move in space by combining the joint angles and knowledge of the robot’s 545

kinematics; however, its representation is adapted from experience, thus automatically 546

compensating for errors in the model as well as incorporating the statistical properties 547

of the approaching stimuli. This representation naturally serves the purpose of 548

predicting contacts with any part of the body of the robot, which is of clear behavioral 549

relevance. Furthermore, we implemented an avoidance controller whose activation is 550

triggered by this representation, thus endowing the iCub with a “margin of safety”. 551

Finally, simply reversing the sign of the controller results in a “reaching” behavior 552

toward approaching objects, using the closest body part. 553

One important feature of the proposed method is its invariance with respect to the 554

robot configuration (posture) and the input modality used. Capitalizing on the robot’s 555

kinematic model, current stimulus positions are automatically remapped into every 556

taxel’s FoR, taking also every taxel’s current pose (position and orientation) into 557

account. In the double-touch scenario, both the “receiving” arm with the taxel array 558

and the “touching” arm with the extended finger (the nearing stimulus) move, which, 559

however, does not pose any difficulty for our method. Furthermore, our model is 560
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agnostic as to whether the stimulus was perceived motorically or visually. In the last 561

scenario with external approaching objects, the arm configuration was static during 562

learning, but the head and eyes were moving. Nevertheless, a moving arm would again 563

be automatically considered using exactly the same computation. This is also 564

demonstrated in the avoidance / “reaching” scenarios, where the arm moves, but the 565

stimulus’ effect on the taxels is constantly evaluated, resulting in online adaptation of 566

the robot response. 567

Another important asset of the proposed model is that learning is fast, proceeds in 568

parallel for the whole body, and is incremental. That is, minutes of experience with 569

objects moving toward a body part produce a reasonable representation in the 570

corresponding taxels that is manifested in the predictive prior to contact activations as 571

well as in the avoidance behavior. Smoothing using Parzen windows applied to the 572

discrete representation specifically contributes to this effect in the case of undersampled 573

input spaces. 574

The investigated scenarios parallel those experienced by humans and animals—also 575

because of the anthropomimetic nature of the iCub—and should thus inform us directly 576

about the mechanisms of peripersonal space representations in primates as they have 577

been subject of intensive investigations in cognitive psychology as well as the 578

neurosciences over decades. First, the developmental trajectory leading to the 579

acquisition of these representations is largely unknown. The development of reaching 580

(e.g., [51, 52]) may constitute one key factor in this mechanism; the exploration of own 581

body may be another (e.g., [11, 17]). In this paper, we mimicked a similar 582

developmental trajectory by considering first the self-touch behaviors and adding 583

encounters with objects later on. 584

The architecture presented is, at this stage, not a model of a particular brain 585

network. Casting it into the vocabulary common in the neurosciences, one could say 586

that the representation associated with every taxel may correspond to a spatial 587

receptive field of a neuron that is centered on that particular taxel (hence body-part 588

centered coordinates). The RF has a fundamentally spatial nature; further, it is 589

modality-independent—as we demonstrated by entering it and eliciting its “neural” 590

response with motor/proprioceptive as well as visual targets. However, note that this 591

“neuron” does not have a tactile RF—tactile sensations were used in the 592
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learning/adaptation of this RF only. However, it would be easy to extend our 593

representation by constructing a bimodal visuo-tactile or, more precisely, tactile-spatial 594

neuron whose activation would be the sum of the “spatial” and tactile inputs. The 595

reference frame transformations are in our case mediated by the kinematic model of the 596

robot and use the iCub Root FoR as common ground connecting all kinematic and 597

visual chains. This is unlikely to correspond to the exact mechanism used by the brain; 598

however, bimodal neurons with tactile RFs on a body part and visually RFs around it 599

and anchored to it—following it in space independently of eye position—have been 600

identified both in premotor areas (F4) (e.g., [53] for a survey) and parietal areas (VIP 601

and other – e.g., [23]). Our position is similar to [29], for example, assuming that the 602

necessary coordinate transformations (from visual or proprioceptive input to body-part 603

centered coordinates) are performed by an upstream process. Our model then receives 604

this as input. Several common reference frames (e.g., eye-centered [54]) have been 605

proposed to act in the posterior parietal cortex. In summary, the architecture presented 606

is a first implementation that supports the relevant behaviors. However, since the 607

scenarios as well as the sensory modalities available to the robot parallel the conditions 608

in biology (at a certain level of abstraction), the road is open to further grounding of 609

the architecture to the corresponding putative brain mechanisms. 610

One possible practical limitation of the presented architecture is its computational 611

and memory requirements. The distributed and parallel nature of the representation 612

has many advantages. At the same time, the complexity grows linearly with the number 613

of taxels—each of them monitoring its spatial receptive field and, possibly, updating its 614

probabilistic representation. However, this is clearly in line with the nature of brain 615

computation. Furthermore, the spatial resolution we have selected (with taxels of 616

around 2cm in diameter on the skin surface) is likely unnecessarily high—the 617

body-part-centered receptive fields of parietal cortex neurons are typically much larger 618

(e.g. spanning a whole upper arm [5]). Also, lower resolution may still suffice to support 619

the margin of safety behavior. Such a modification would be straightforward in our 620

setup, requiring only a redefinition of the virtual taxels. 621

The “demonstrators”—avoidance and “reaching”—are also only first steps in this 622

direction. They are simply exploiting fairly standard controllers to generate movements 623

of a virtual point that is a result of voting of taxels activated by a moving object. 624
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Avoidance differs from reaching in the direction of this movement vector only. This 625

could be further differentiated and developed, leading to simple reflexive as well as 626

complex whole-body avoidance mechanisms such as those reported in monkeys [2]; an 627

implementation in the iCub relying on force/torque feedback has been presented in [41]. 628

Finally, “reaching” here is a simple mechanism that results in approaching to a nearing 629

object with the skin part that was most likely to be contacted by the object. Yet, this 630

resembles the principle of motor equivalence, where the controller in fact can generate 631

reaching movements using arbitrary body parts as end-point. 632

Future work can proceed along several directions. First, the architecture can be 633

refined and better grounded in concrete mechanisms that are assumed to operate in the 634

primate brain, leading to a better explanation of why certain connectivity patterns 635

including polymodal neurons are a necessity and not only the result of the quirks of 636

evolution. This would provide an invaluable tool to test biological theories and crucially 637

advance the computational modeling efforts. Second, the full kinematic model of the 638

robot that was taken for granted here could be dropped and the learning problem 639

expanded to full complexity dealing with the emergence of spatial representations from 640

motor, proprioceptive, tactile and visual inputs. The double-touch scenario could in fact 641

serve this very purpose of body schema learning; the self-calibration framework of [18] 642

could be adapted and the Denavit-Hartenberg representation of kinematics and the 643

inverse kinematics solver replaced by more biologically motivated analogs. Third, the 644

margin of safety in primates does not have uniform extension and resolution; instead, 645

body parts, in particular face and hands, receive more attention than others. This could 646

be emulated in the robot as well. Fourth, the model proposed in this work could be 647

further developed to address the expansion of the RFs after tool use as first documented 648

by [34] and modeled by [33] in a humanoid robot. Fifth, the architecture proposed is 649

prone to impact on practical applications. Whole-body tactile sensing together with a 650

virtual margin of safety around the robot’s body dramatically increases the robot’s own 651

safety as well as safety of humans that share the environment with the robot. The 652

proposed implementation will have to be tested in such scenarios and possibly enhanced 653

also by force/torque sensing that is already available on the iCub to guarantee 654

robustness in all situations. Finally, with the advent of robotic skin technologies 655

(see [39] for a review), frameworks similar to this one can find applications in diverse 656
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robotic platforms and are by no means restricted to the iCub humanoid robot (or to 657

humanoids altogether). 658

Materials and Methods 659

Experimental Setup 660

The iCub is a full humanoid robot platform originally developed to support research in 661

artificial cognitive systems. In this section we describe the key components relevant for 662

this work: the artificial skin, the robot’s sensing modalities, the eye and camera setup, 663

the model of the robot’s kinematics, visual processing and gaze control, and finally the 664

avoidance and reaching controller used in the experiments. For details on the basic 665

structure of the iCub we refer the reader to [55]. 666

Artificial skin. Recently the iCub has been equipped with an artificial 667

pressure-sensitive skin covering most body parts [26]. The latest iCub version contains 668

approximately 4000 tactile elements (taxels)—in the fingers, palms, forearms and upper 669

arms, torso, legs and feet. In the experiments performed in this work, we restrict 670

ourselves to the forearms and palms. The iCub forearm and hand with exposed skin is 671

shown in Fig 12 left. With the exception of the palm and fingertips, the skin covering 672

all body parts consists of patches with triangular modules of 10 taxels each (Fig 12 673

middle). There are in total 23 modules on the forearm in two patches and hence 230 674

taxels. However, for the purposes of this study this resolution would be an unnecessary 675

burden. Therefore, we generate RFs grouping all responses in a triangular module in a 676

single “virtual” taxel whose position in the body surface corresponds to the central 677

physical taxel. 678

The palm has a slightly different structure corresponding approximately to four 679

triangles (see Fig 12 right). It is made out of a single printed circuit board composed of 680

an array of 43 taxels. We artificially split the array into four regions of 8 to 10 taxels, 681

forming virtual taxels as before. These are shown in Fig 12 (right), with the central 682

taxels marked with full circles. The region enclosed between the thumb and the fingers 683

is not considered as it is unlikely that it is touched by a moving object. In the main 684

article, we use “taxel” to refer to this virtual taxel. 685
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Fig 12. Pressure-sensitive skin of the iCub. (left) iCub forearm with exposed

skin patches. (middle) Four triangular modules of the iCub skin PCB (10 taxels each).

The central taxel corresponds to the virtual taxel which in turn is made by joining the

responses of a full triangle. (right) Exposed skin of the palm with virtual taxels

highlighted.

A spatial calibration of the skin of the forearm with respect to the iCub kinematic 686

model has been performed in del Prete et al. [48]. The palm was calibrated using data 687

from the CAD model. The position of all taxels as well as the orientation of their 688

surface normal in the iCub Root FoR can thus be extracted if the current joint 689

configuration is known. 690

Joint angle sensing. Proprioceptive inputs in the iCub simply consist in angular 691

position measurements at every joint. For most joints, they are provided by absolute 692

12bit angular encoders (see [55] for details); small motors (head and hands) employ 693

incremental encoders whose zeros are calibrated at startup. 694

Head and eyes. Vision of the iCub is provided by two cameras mounted in the 695

robot’s eyes. The neck of the robot has three degrees of freedom (DoFs) and there are 696

three additional DoFs in the eyes allowing vergence and version behaviors. The tilt DoF 697

is mechanically coupled (both eyes move up and down); the version and vergence 698

movements are coupled in software following an anthropomimetic arrangement. With 699

appropriate calibration [56], depth information can be extracted from binocular 700

disparity. 701
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Kinematic model and coordinate transformations. The iCub sensors provide 702

raw data in different FoRs. These need to be transformed in order to compare similar 703

quantities. In primates, the role of establishing a common ground between these rich 704

but diverse sources of information is attributed to the body and peripersonal space 705

representations. As we described in Section Introduction, coordinate transformations 706

(such as between eye-centered and body-part-centered FoRs) are necessary. In our case, 707

we specifically need two types of transformations: 708

� Purely kinematic transformations. For the first scenario where the robot learns 709

about the space around its body through double-touch (cf. Table 1), the 710

“touching” body part (like the index finger of the right hand – Fig 1 middle) need 711

to be brought to the FoR of the taxels that are “touched” (like the skin on the left 712

forearm). 713

� Visual-kinematic transformations. In the second scenario, vision is considered. 714

There are two variants of the experiment: i) double-touch with visual tracking of 715

the finger approaching the contralateral arm (see Table 2); ii) an independently 716

moving object approaching and touching the robot’s skin (cf. Table 3). In both 717

cases, transformations from the image (retina) FoR are necessary. This involves 718

exploiting binocular disparity to obtain a 3D position of the object (or finger) in 719

the head FoR and then following a sequence of coordinate transformations to 720

eventually reach the FoR of individual taxels. 721

Learning these transformations was not the goal of this work; therefore, we have 722

employed the existing kinematic model of the iCub that is based on the 723

Denavit-Hartenberg convention and available in the form of a software library 724

(iKin, [57]). The library allows traversing any kinematic chain of the iCub by employing 725

an appropriate sequence of transformations. In fact, kinematic representations of 726

individual chains in iKin start/end in the Root FoR of the robot (around the robot’s 727

waist) and this is employed as an intermediary to connect individual sub-chains. The 728

transformation to individual taxels’ FoRs is provided by the skin calibration. 729

These composite transformations are subject to errors that include (i) mismatch 730

between the robot model based on the mechanical design specifications (CAD model) 731

and the actual physical robot; (ii) inaccuracies in joint sensor calibration and 732
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measurements; (iii) unobserved variables as for example backlash or mechanical 733

elasticity; (iv) inaccuracies in taxel pose calibration; (v) errors in visual perception due 734

to inaccurate camera calibration. The combination of these sources of error can amount 735

to a total of several centimeters. However, in the proposed approach, the representation 736

that every taxel learns with regard to its surrounding environment will automatically 737

compensate for the systematic component of these modeling errors. 738

Visual processing and gaze control. For the scenarios involving tactile-visual 739

learning (described in Table 2 and 3), additional processing steps are needed to compute 740

the approaching stimuli’s position and velocity: moving objects need to be detected, 741

segmented out of the background and their position tracked. We implemented two 742

variants of the tracking mechanism: 743

1. Tracking of fingertip with colored marker. In this case, we implemented an 744

HSV-based color segmentation module that can track a green marker placed on 745

the iCub’s index fingertip on both the right and left image. A simple triangulation 746

procedure yields the 3D coordinates of the fingertip in the robot’s Root FoR. 747

2. Tracking of generic objects. In this second case, we used a tracker for generic 748

objects under certain moderate assumptions on the availability of visual features 749

and limits on their velocity and size, as developed in Roncone et al. [45]. The 750

tracking software consists of a number of interconnected modules, schematically 751

depicted in Fig 13. The first module uses a 2D Optical Flow [58] to detect motion 752

in the image. If this is the case, it triggers a 2D particle filter module [59] to track 753

the object in the image plane based on its color distribution. At this stage, the 2D 754

planar information related to the approaching object (namely, the centroid of the 755

object and an estimation of its size) is converted into 3D (world) coordinates via a 756

stereo disparity module [60]. A Kalman filter then completes the position 757

estimation process. It uses 3D points as determined by the stereo vision module 758

and it employs a fourth order dynamical model of the object motion. Finally, a 759

gaze controller was employed in order for the eyes and head to smoothly follow 760

the tracked object in space. The details of the gaze controller can be found in [20]. 761
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Fig 13. Tracking of generic objects. See text for details.

Data collection for learning 762

As outlined above, two distinct scenarios were considered where a given skin patch was 763

stimulated by the robot’s own body (double-touch) or by independently moving objects. 764

However, the basic principle is the same, that is, in both cases it is implemented in a 765

local, distributed, event-driven manner. An illustration of the two cases is depicted in 766

Fig 1 (middle and right). A volume was chosen to demarcate a spatial “receptive field” 767

(RF) around each taxel (we will use this notion of receptive field for the scenario in the 768

robot from now on). Similarly to what happens in humans and monkeys, these receptive 769

fields distributed around the body are anchored to the body part they belong to and 770

encode local information. However, unlike in biology where receptive fields of individual 771

neurons are tied to a particular sensory modality and response properties of the neuron, 772

our receptive field is a theoretical construct—a volume of space around the taxel. In 773

what follows, any stimulus moving toward the robot’s body—note that this can be either 774

another part of the body of the robot or an external visual stimulus—will be remapped 775

into the taxel’s reference frame and thus potentially enter its receptive field. The RFs 776

are limited to a conical volume oriented along the normal to the local skin surface and 777

extend to a maximum of 20cm from the surface (green region in Fig 14). This is 778

consistent with neurophysiological observations [2]. When a stimulus enters the conical 779

volume of a RF, we mark the onset of a potentially interesting event. Subsequently, the 780

position and velocity of the object w.r.t the taxel is recorded and the distance D and 781

time to contact TTC computed. The scalar distance, D, is calculated as follows: 782

D = sgn(
−→
d · −→z )||

−→
d || , (1)

where
−→
d is the displacement vector pointing from the taxel to the stimulus (geometric 783

center of the incoming object), −→z is the z-axis of the reference frame centered on the 784

taxel and pointing outward (coincident with the normal to the skin surface at the taxel 785
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Fig 14. Receptive field of a taxel and approaching stimulus. See text for

details.

position). The sign of the dot product is positive if the object lies in the hemisphere 786

extending from the taxel. The scalar distance, D, preserves information about the 787

relationship of the event w.r.t. taxel normal. D can be negative because of modeling or 788

measurement errors or simply because a stimulus is behind a particular body segment. 789

The time to contact, TTC, is defined as follows: 790

TTC = − sgn(
−→
d · −→v )

||
−→
d ||
||−→vd||

= − sgn(
−→
d · −→v )

||
−→
d ||

||−→v · cos(α)||
, (2)

where
−→
d is again the displacement vector pointing from the taxel to the stimulus, −→vd is 791

the projection of the stimulus’s velocity −→v onto
−→
d , and α is the angle between −→v and 792

−→
d , as shown in Fig 14. The sign term takes into account the direction of motion of the 793

stimulus. That is, for stimuli in the “positive hemisphere” moving toward the taxel, the 794

dot product will be negative (
−→
d and −→v have opposite directions) and the time to 795

contact will be positive. The opposite holds for objects moving away from the taxel or 796

the case when modeling errors return a negative distance. The magnitude of TTC is 797

simply distance over speed (norms of the respective vectors,
−→
d and −→vd). 798

This definition of D and TTC is clearly an approximation that simplifies the 799

estimation of probability densities by bringing down the full description of a stimulus 800

motion into a bi-dimensional space. This is useful to keep the learning procedure 801
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feasible with a small number of data points and it has the additional advantage of 802

allowing one-shot learning: a single stimulus and contact with the skin enables a rough 803

but useful estimation of the corresponding RF density. Note that this procedure—the 804

recording of D and TTC of approaching stimuli—is carried out in parallel for all taxels 805

whose RFs overlap with the stimulus location. These data are buffered for three seconds 806

and used for learning only if the stimulus eventually touches the skin and at least one 807

taxel measures the contact event. In this case, a learning iteration is triggered as follows: 808

1. For all the taxels that measured a contact event, the buffer of object positions in 809

their local FoR is traversed back in time in time steps of 50 ms. As long as the 810

stimulus is in a given RF, D and TTC at every time step are recorded as positive 811

examples on each taxel’s data set. 812

2. For all other taxels of the same body part, the procedure is analogous, but 813

negative examples are appended to their respective data sets. 814

Stimuli that move close to but never touch the body surface do not contribute to the 815

peripersonal space representation. However, taking into account all events that come 816

sufficiently close to the body surface would be an equally valid approach. 817

Internal representation 818

Each taxel stores and continuously updates a record of the count of positive and 819

negative examples that it has encountered for every combination of distance and time to 820

contact. We defined the range of D as [−10, 20] cm and TTC as [0, 3] s. The variables 821

were discretized into eight equally-sized bins for the distance and four bins for the time 822

to contact respectively; the TTC requires a velocity estimation of the approaching 823

object and gives rise to noisier estimates. There are 32 combinations and hence 32 824

items, [npositive, nnegative], in every taxel’s memory. As mentioned earlier, the main 825

advantage of this representation is its simplicity and the possibility of incremental 826

updates—for each new positive or negative example, the respective count in memory is 827

incremented. However, most relevant for the robot is an estimation of the probability 828

(density) of an object hitting a particular part of the skin, which can be used to trigger 829

avoidance responses, for example. The stimulus’s “coordinates” w.r.t. each taxel (i.e. 830
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distance, time to contact) can be discretized as described above and a frequentist 831

probability estimate obtained simply as: 832

P (D,TTC) ≈ f(D,TTC) =
npositive(D,TTC)

npositive(D,TTC) + nnegative(D,TTC)
(3)

Such an approach—discretized representation and querying—constitutes the simplest 833

solution. However, it may give rise to unstable performance, in particular in the case 834

when the state space is undersampled. Therefore, it is desirable to obtain a continuous 835

function f which can be sampled at any real values of [D,TTC]. This can be achieved 836

by using the Parzen-Window density estimation algorithm [61]—in fact, to interpolate 837

the data. In a 1-dimensional case, the interpolated value p(x) for any x is given by: 838

p(x) =
1

n

n∑
i=1

1

h2
Φ

(
xi − x

h

)
(4)

where xi are the data points in the discrete input space, Φ is the window function or 839

kernel and h its bandwidth parameter, which is responsible for weighting the 840

contributions of the neighbors of the point x. We used a Gaussian function, hence we 841

have: 842

p(x) =
1

n

n∑
i=1

1√
2πσ

exp

(
− (xi − x)2

2σ2

)
(5)

In our case, which is bi-dimensional (with x = [D,TTC] as the input variables), we 843

specified the standard deviation σ equal to the width of the single bin in each dimension 844

of the input space. For any value of D = d and TTC = ttc, the final interpolated value, 845

p(d, ttc), represents the probability of an object at distance d and time to contact ttc 846

hitting the specific taxel under consideration. It is worth noting that only the original 847

discretized [D,TTC] combinations have estimates of a probability function associated 848

with them, each pair [Di, TTCj ] independently from others. However, the whole 849

“landscape” arising from f(D,TTC) cannot be interpreted as a probability mass 850

function (in discrete case) or probability density function (in continuous case), because 851

the overall probability for the whole space of D and TTC combinations can take any 852

values and does not sum to 1. 853
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Fig 15. 2D schematics of single taxel model. (Left) Side view of the simulated

taxel with examples of approaching stimuli: the purple slab at the bottom represents a

taxel; the green sector is a projection of the taxel’s cone-shaped receptive field; blue

sector marks the region where stimuli are generated. The two examples show a positive

event (blue line) and a negative one (red line). (Right) Top view of the simulated taxel

with its nearby skin structure: the purple circle represents grouping of several sensors

(physical taxels) in a modeled taxel (virtual).

Monte Carlo simulation of a single taxel 854

In order to investigate the quality of the representation proposed in Section Internal 855

representation, a Monte Carlo simulation was implemented. In particular, we wanted to 856

study the properties of the acquired representation in noiseless and noisy 857

conditions—with sufficient samples available and with control over noise—and 858

investigate the effect of the hyper-parameters (such as number of bins for discretization, 859

definition of the RF cone, range of stimuli’s speed, etc.). To this end, a 3D model of a 860

single taxel with simulated stimuli was prepared—see Fig 15 for an illustration of the 861

simulation environment. The code with the complete model is available at the public 862

repository [47]. 863

The model parameters were chosen to mimic the real robot setup as closely as 864

possible. The simulated taxel itself has a radius of 0.235cm, which mimics the radius of 865

the real iCub taxels. However, objects landing within 2cm from the taxel’s center 866

(purple areas in Fig 15) are still considered positive, resembling the size of a triangular 867

module of the iCub skin which is itself composed of 10 taxels (see Fig 12 above). These 868

“virtual taxels” will be used in the real setup by joining the responses of a number of 869

adjacent physical taxels. The taxel’s cone-shaped receptive field is depicted in green. 870
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Approaching stimuli are simulated by generating trajectories possibly corrupted by 871

measurement noise. Since the nature of our data collection and learning method 872

requires positive examples (objects contacting the virtual taxel) as well as negative 873

examples (objects contacting neighboring taxels), we simulated three neighboring 874

virtual taxels (Fig 15 right). We implemented a stochastic “shower” of objects with 875

their starting points uniformly distributed in the blue region (“starting zone” in Fig 15 876

left) and their landing points following a Gaussian distribution centered on the 877

simulated taxel (µ = 0; σ = 5cm). The velocity of the object is a vector directed from 878

the starting point to the landing point, whose speed is uniformly distributed between 879

5cm/s and 15cm/s (but constant over time for any given trajectory). Position and 880

velocity are sampled with T = 50ms. Measurement noise is Gaussian both for position 881

and velocity. The Monte Carlo simulation is implemented in Matlab. 882

Avoidance and reaching controller 883

As an exploitation of the learned representations, we implemented a velocity controller 884

that can move any point of either the left or right kinematic chain of the arms in a 885

desired direction. During an avoidance task, the movement is directed away from the 886

point of maximum activation, along the normal to the local surface in that point. For 887

reaching, the desired movement vector has the opposite direction. We compute a 888

weighted average for both the position of the avoidance/reaching behavior and its 889

direction of motion as follows: 890

P(t) =
1

k

k∑
i=1

[ai(t) · pi(t)]

N(t) =
1

k

k∑
i=1

[ai(t) · ni(t)]

(6)

where P(t) and N(t) are the desired position and direction of motion in the robot’s 891

Root FoR respectively, pi(t) and ni(t) are the individual taxels’ positions and normals. 892

These are weighted by the activations, ai(t), of the corresponding taxels’ 893

representations. The weighted average is computed by cycling through all the taxels 894

whose activation is bigger than a predefined threshold at any given instant of time. 895
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Therefore, the resultant position and the direction of motion of the avoidance/reaching 896

behavior are proportional to the activation of the taxels’ representations and change 897

dynamically as the activation levels of different taxels varies. The velocity control loop 898

employs a Cartesian controller [57] whose reference speed was fixed to 10cm/s. 899

References
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Supporting Information

S1 Fig. End-effector trajectories in operational space during avoidance

(red) and reaching (blue). A schematic illustration of the robot’s upper body

kinematics during resting configuration is depicted. For each link—torso (gray), left

arm (pink), right arm (light blue), right and left eye (yellow)—the end-effectors’

reference frames are also shown.

S2 Fig. Avoidance demonstration using distance only information. (Left)

Object approaching the inner part of left forearm. Top plot shows the distance of the

object from the taxels in their individual FoRs. The shaded purple area marks the

velocity of the body part (common to all taxels; maximum activation corresponding to

10cm/s). Bottom plot depicts the activations of the forearm taxels’ PPS

representations. First approaching behavior was directed to the external part of the

forearm (taxels in tones of green); second approach toward the internal part (taxels in

tones of red) (Right) Object approaching the right palm. From [45].
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