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A B S T R A C T

The new generation of robotic devices will require machines able to
adequately perform rich interactions with objects – and eventually
humans – in their environment. This aspect will prove fundamental
in the context of moving robots from the controlled domains typical
of a factory environment toward our – much less structured – every-
day life. To this end, robots need the ability to express some sort of
awareness of their body and their surroundings: instead of focusing
exclusively on the end-effector as the only part that interacts with
the environment, the robotic field needs to move toward a more dis-
tributed, decentralized representation of the self and the nearby space.
More importantly, albeit a consistently improving technology, robotic
systems are equipped with inherently faulty systems characterized
by calibration and systematic errors that need to be effectively coped
with.

This thesis deals with the formalization and the development of
a system able to let a humanoid robot learn a multisensory repre-
sentation of the space around its body (or peripersonal space). The
robot is equipped with a whole-body artificial skin and learns the
consequences of its interaction with the self and the environment by
means of a multisensory (tactile-motor and tactile-visual) representa-
tion. This results in the extension of the robot’s tactile domain toward
the nearby space, in such a way that it lets the robot to implicitly cope
with modeling or calibration errors. Further, this representation is put
under testing with a sensory-based guidance of the motor actions per-
formed by the robot: that is, an avoidance and catching controller ca-
pable of using any body part in order to either prevent collision with
or come into contact with incoming objects.
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1I N T R O D U C T I O N

The main lesson of 35 years of AI research
is that the hard problems are easy

and the easy problems are hard.
— Steven Pinker [64]

1.1 motivations : toward a new generation

of internal models for robotics

It is a flourishing period for robotics in general: a number of
top-notch companies are investing in the field, the first (work-
ing) robotic devices are showing up at exhibitions and popu-
lating our homes, and the press is universally designating it as
the latest trendsetting discipline in the engineering world. On
the other side, a number of widely esteemed science celebri-
ties not belonging to the field are demonizing it with a series
of questionable opinions1,2. Overall, it is conservative to con-
clude that robotics has seen a significant increase in popularity
and widespread attention in the past few years. The established
consensus is that, sooner or later, robots will pervade our life,
replacing us in some – if not most – of our everyday duties.

A number of issues are preventing these dystopian forecasts
to happen – at least in the short term. It will be not matter of de-
bate here, but in general, a key element in the pursuing of this
goal is related to the development of truly autonomous systems.
Autonomy is, unquestionably, what impresses us the most; still,
autonomous cars, autonomous vacuum cleaners, autonomous
flying drones are only the tip of the iceberg in the wide area
of autonomous systems. As of now, any approach that backed
this kind of devices is falling into the classical AI paradigm, in
which a sufficient enough set of sensors helps in contextualiz-
ing a narrow (and solvable) problem in order to provide the
device with a sufficient enough autonomy. That is, autonomy,
for how big its meaning may represent, is no way tied in with

1 Elon Musk Compares Rogue Artificial Intelligence to Demons. Yes, Really: http://

mashable.com/2014/10/26/elon-musk-artificial-intelligence-demons/

2 Stephen Hawking warns artificial intelligence could end mankind: http://www.bbc.com/
news/technology-30290540

1

http://mashable.com/2014/10/26/elon-musk-artificial-intelligence-demons/
http://mashable.com/2014/10/26/elon-musk-artificial-intelligence-demons/
http://www.bbc.com/news/technology-30290540
http://www.bbc.com/news/technology-30290540


1.1 motivations 2

a perceptual system capable of achieving autonomy. But perceptual
systems – even humans’ – are inherently faulty and poor in
their measurement of the outside world. Any sensor the subject
is provided with will prove inadequate in some circumstances,
especially in the case of artificial systems: this is a fundamental
constraint a generic subject (either biological or robotic) has to
cope with.

The way humans are dealing with this issue is by integrat-
ing the information coming from different sources into a single,
coherent view of their perceptual world3. By its very nature, a
biological agent has a set of constraints to cope with, such as
complexity, timing, energy, computational resources, and many
more. Consequently, it chooses to maximize the amount of in-
formation it is provided with by melding different modalities
one another. Further, this optimization proceeds also in the di-
rection of filtering out whatever is irrelevant to the subject in a
specific instant of time. This provides the subject with a max-
imization of the trade-off between the amount of information
and the amount of resources needed to process that informa-
tion.

This approach is best exemplified by the peripersonal space
(PPS) representation, a model of the nearby space that holds a
central role in the perception of humans and animals. Periper-
sonal space is the space surrounding our bodies, which can
be reached by our limbs. In this region, there is evidence of
multisensory-motor integration (see di Pellegrino and Ládavas
[20] for a recent review on the topic). Further, it is implicitly
focusing the processing power in the region of most relevance,
i.e. the space surrounding the body. PPS representations are
probably best described as multisensory and sensorimotor in-
terfaces, with a fundamental role in the sensory guidance of
actions. Owing to them is the ability to perform timely and
appropriate actions toward objects located in the nearby space,
which is critical for the survival of every animal. Depending
on context, these actions may constitute an approaching or an

3 It is worth noting that many of the concepts mentioned in this preliminary section
have been not properly introduced to the reader. This is because a proper dissertation
of concepts like “autonomy”, “perceptual world”, “intelligence” probably deserves
a whole thesis on its own. In this case, with “perceptual world” we mean whatever
is mediated by the perceptual system, i.e. we are not constraining ourselves to the
external world alone but we are considering also the proprioception and any esti-
mation of the internal state of the subject. Accordingly, as we will clarify later on,
there is no reason to limit our concept of “perceptual world” to the purely “sensory”
modalities (such as vision or touch): the motor system is an important carrier of
information on its own, not only regarding the internal state of the system, but also
in relation with the interaction of the system with its environment.
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avoidance behavior. In the case of defensive behavior, this cre-
ates a “margin of safety” around the body, such as the flight zone
of grazing animals or the multimodal attentional space that sur-
rounds the skin in humans [33].

Analogous behavior is desirable in robots as well. However,
to date, robot controllers largely concentrate on the end-effector
as the only part that interacts with the environment. The rest
of the body is typically represented as a kinematic chain, the
volume and surface of the body itself rarely taken into account.
Sensing is dominated by “distal” sensors like cameras, whereas
the body surface is “numb”. As a consequence, reaching in clut-
tered, unstructured environments poses a severe problem, as
the robot is largely unaware of the full extent of its body, lim-
iting the safety to the robot itself and the surrounding environ-
ment. That is one of the key bottlenecks that prevents robots
from working alongside with human partners.

The robotic platform used in this thesis, the iCub humanoid
robot [55], is provided with a set of sensors and capabilities
comparable to humans’ and, more importantly, an artificial skin
on most of its body. This gives us the unique opportunity to
learn how these representations can be developed on a robotic
platform, and let the robot build up its own representation of
the self and the nearby space. Our work does not attempt at
providing a functional model of peripersonal space representa-
tions, but rather a practical implementation that supports the
relevant behaviors. Nonetheless, the road is open to further
grounding of the architecture in putative brain mechanisms.

1.2 contribution and outline

This thesis presents to our knowledge the first architecture ca-
pable of providing a humanoid robot with a distributed, decen-
tralized representation of the space around its body. Starting
from an initially blank state, the robot learns a multisensory
(tactile-motor and tactile-visual) representation of the outside
world by means of of a whole-body skin and through interac-
tion with the environment. Further, this multimodal representa-
tion is put under testing with a sensory-based guidance of the
motor actions performed by the robot: that is, an avoidance and
catching controller capable using any body part in order to ei-
ther prevent collision with or come into contact with incoming
objects.
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In our view, this work paves the way for robots to enter new
application domains. Robots capable of detecting and locating
contact on any body part and also able to reach and avoid
with any body part can be said to posses whole-body aware-
ness, making them intrinsically safe not only for themselves (as
demonstrated here), but also for their environment, possibly a
humanly populated one. This is certainly one of the overarch-
ing goals and future measure of success of humanoid robotics.

In the following, an introduction to the peripersonal space
problem in humans and animals is provided (Section 2.1), as
well as the state of the art in the robotics field (Section 2.2).
Chapter 3 describes the robotic platform this thesis is based
upon, whereas the subsequent chapters detail the proposed ap-
proach. To summarize, we list here the main contributions of
this thesis:

– the first, to our knowledge, attempt at approaching the
problem of building up a complex, multisensory represen-
tation of the nearby space that bridges the gap between
biological and robotic agents [Chapter 4];

– a method for performing double touch and self-exploratory
behaviors on an humanoid robot [Chapter 5];

– an application of the double touch paradigm in the context
of autonomous closed-loop calibration [Chapter 6];

– an architecture able to build up an integrated represen-
tation of the nearby space of a robot through interaction
with the self and the environment [Chapter 8];

– an exploitation of such a representation by means of a
distributed avoidance and catching controller [Chapter 9].



2T H E I M P O RTA N C E O F
P E R I P E R S O N A L S PA C E I N
H U M A N S A N D R O B O T S

2.1 peripersonal space in humans and ani-
mals

The peripersonal space (PPS) is of special relevance for every an-
imal. It is defined as the space immediately surrounding our
bodies [67], within which objects can be reached for and manip-
ulated. It acts as an interface between the body and the outside
world, for defensive and/or purposeful actions toward objects:
for this reason, items situated in peripersonal space (or mov-
ing rapidly toward it) benefit a different representation from
those in extrapersonal space [12]. In the interpretation given
by Graziano and Cooke [33], the PPS encodes the space near
the body, computes a margin of safety, and helps to coordinate
movements in relation to nearby objects with an emphasis on
withdrawal or blocking movements. Deeply intertwined with
the concept of body schema (or body image), the PPS is thought
to play a central role in the construction and development of a
rich internal model of the interrelations between the body struc-
ture and the nearby space [32]. Furthermore, the neurons that
encode PPS may also provide a neuronal basis for the psycho-
logical phenomenon of personal space [33], the flexible bubble of
space around each person that is protected from intrusion by
other people [36].

This space thus deserves special attention and probably justi-
fies specific neural circuitry devoted to its representation, which
has to dynamically integrate information from several modali-
ties (motor, visual, somatosensory and auditory). At this point,
it is worth noting that this aspect has been historically stud-
ied by two distinct disciplines: the neurophysiology field on
one side, and all the disciplines related to neuropsychology
and behavioral psychology on the other. Not surprisingly, they
followed two very distinct paths that resulted in different out-
comes – the former being used to a bottom-up approach while
the latter attacking the problem from a more top-down per-
spective. The neurophysiological approach focused on empha-

5



2.1 peripersonal space in humans and animals 6

sizing the proprioceptive modality and its interplay with the
motor modality (i.e. its role in the control of movement); con-
versely, the psychological field was generally highlighting the
multisensory aspect of this representation, that is how the dif-
ferent modalities were combined and cross-referenced in or-
der to build up a coherent representation of the body and the
nearby space. Luckily, in the recent years the two fields have
begun to converge toward a common ground: whilst the neu-
rophysiological studies were shifting their focus on how purely
“sensory” modalities such as vision and touch were integrated
in the parietal lobe and the premotor cortex, the psychological
experiments were trespassing their comfort zone by studying
how this multisensory representation interfaces with the motor
system.

In primates, evidence coming primarily from recordings in
macaque monkeys is pointing to a parieto-frontal network as
to the key circuitry supporting this functionality (e.g. [33, 44]).
The key area in the frontal lobe seems to be area F4 of ven-
tral premotor cortex [25, 67] including the region of the spur of
the arcuate sulcus (see Graziano and Gandhi [34]). In the pari-
etal lobe, the area more strongly connected with area F4 is area
VIP (Ventral Intra-Parietal). Despite the fact that some observa-
tions report the presence of auditory-somatosensory responses
as well, in this thesis we will leave the auditory modality aside
and focus in particular on the integration of visual and tactile
inputs.

Neurophysiological studies in monkeys [7, 22, 35, 31, 68, 11,
25, 30, 66], as well as neuropsychological [21, 48], behavioural
[80, 82, 4], neuroimaging [7, 53] and electroencephalography
[76] studies in humans, have revealed that the neural repre-
sentation of peripersonal space is built up through a network
of interacting cortical and subcortical brain areas. A key part
of peripersonal space coding can presumably be attributed to
populations of polymodal neurons that, in addition to motor dis-
charge, have tactile and visual receptive fields (RFs) extend-
ing from the tactile one around the respective body part (e.g.,
[29, 25] - for a review, see Graziano and Cooke [33] and Holmes
and Spence [44]). Furthermore, the visual RFs are often coded
in the same frame of reference (FoR) of the respective body part
and thus, during active or passive mobilization, follow the body
part in space. This suggests that motor and proprioceptive in-
formation are probably integrated in such a body-centered en-
coding. A good part of the evidence coming from monkeys is
presumably informative in the case of humans as well [7].
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The adaptivity of these transformations is evident in a great
number of psychophysical experiments – like the prism adap-
tation experiment, and the “rubber hand” experiments [5, 14] –
and, more importantly, in all those experiments that involve
the use of tools. For example, it has been shown that after
some practice with a tool the monkey integrates it into his body
schema, expanding de facto the somatosensory receptive field of
given neurons [46].

Collectively, these results demonstrate that representations of
peripersonal space are body centered or body-part centered
(and the brain seems to use the reference frame most appro-
priate to the information being encoded), are restricted to the
space immediately surrounding the body (extending to about
20 − 40 cm from the skin surface in monkeys, and up to per-
haps 70 cm in humans), and involve the integration of informa-
tion from multiple modalities (somatosensory, proprioceptive,
visual, auditory and motor).

2.2 peripersonal space modeling and its ap-
plications in robotics

There are a number of models addressing phenomena related
to peripersonal space representations. A major component are
coordinate transformations, which seem inevitable in order to
support the coding of information coming from the visual mo-
dality in body-part centered FoR; this has been investigated ex-
tensively and several connectionist models have been proposed
(e.g. [3, 65, 87]). On the other hand, Magosso et al. [51] took
these transformations for granted and focused on the mecha-
nisms of tactile and visual interaction. They proposed a neural
network that models unimodal (visual and tactile) and bimodal
representations of an imaginary left and right body part and
demonstrated a number of phenomena reported in humans
(e.g., tactile extinction).

While individual components that presumably compose the
representations of space around the body can be studied in iso-
lation using computational models in simplified (for example
2-dimensional) scenarios, their interplay are difficult to model
without an articulated body with corresponding sensorimotor
capacities and interaction with the environment. Indeed, in an-
imals and humans, these representations are gradually formed
during interaction with the environment and in a complex in-
terplay of body growth and neural maturation processes. One
of the key behaviors that is relevant to the formation of the
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multimodal body representations is presumably self-touch or
double touch. For example, “by 2-3 months, infants engage in
exploration of their own body as it moves and acts in the environ-
ment. They babble and touch their own body, attracted and actively
involved in investigating the rich intermodal redundancies, temporal
contingencies, and spatial congruence of self-perception” [69]. Such
behaviors may initially be reflexive and controlled by spinal cir-
cuitry – the wiping/scratch reflex has been demonstrated in
frogs [27, 6], though its existence is debated in humans [50] –
but progressively become more complex and voluntary.

In order to model multimodal and nontrivial 3D spatial re-
lationships, such as the one that arises from self-touching be-
haviors, robots qualify as a powerful modeling substrate. Some
of the studies targeting body schema and peripersonal space
representation models were reviewed in Hoffmann et al. [40].
Since platforms with tactile sensing are rare, most of the work
has focused on the interaction of visual and proprioceptive in-
formation (in robotics typically equated with joint angles from
encoders). For example, Antonelli et al. [2] developed a model
in the Nao humanoid robot that adaptively codes the space
that can be reached by the robot. A number of embodied mod-
els were also developed by Asada and colleagues. Hikita et al.
[38] used a humanoid robot and employed a bio-inspired archi-
tecture (self-organizing maps, Hebbian learning, and attention
module) to learn the visual receptive field around the robot’s
hand and its extension when using a tool – inspired by the
behavior of the “distal” type neurons reported by Iriki et al.
[46]. Touch was only emulated and used to trigger the visuo-
proprioceptive association. Finally, most related to our approach,
Fuke et al. [26] used a simulated robot touching itself on the
face to model the putative mechanism leading to the visual and
tactile response properties of neurons in the ventral intrapari-
etal area. A hierarchical architecture with visual, proprioceptive
and tactile modality was used. After learning, as the robot’s
hand was approaching its face, contact with the skin could be
anticipated.

Pushed by the needs of safe interaction of robots with their
environments and, in particular, humans, there is a need for
technologies that allow robots to acquire some form of “whole-
body awareness”. However, a bottleneck of robotics research
along these lines has been the absence of appropriate platforms:
although diverse tactile sensing technologies have been devel-
oped (see Dahiya and Valle [15] for a review), robots with whole-
body tactile sensing have been – to our knowledge – unavail-
able. Alternative solutions mostly relied on force/torque sens-
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ing and impedance control schemes that ensure compliant be-
havior of the platform on contact (e.g. Albu-Schaffer et al. [1]).
Shimizu et al. [81] used force/torque feedback together with en-
coder information to develop self-protective reflexes and global
reactions for the iCub robot. Distributed sensing over the whole
surface of a robotic manipulator was used by Mittendorfer and
Cheng [57]. Utilizing information from accelerometers from their
multimodal “skin” during a motor exploration phase, the di-
rection of movement of every sensory unit in response to every
motor could be learned. Activations of infra-red distance sen-
sors on the same sensory unit could then be used to trigger
local avoidance reflexes to approaching objects. Finally, Jain et
al. [47] devised a controller that allows for reaching in clutter
while taking into account multiple contacts and keeping the
forces within set limits. The solution was verified on a robot
featuring a tactile-sensitive forearm.

2.2.1 the icub humanoid robot as a platform for

developing peripersonal space and margin of

safety representations

The iCub humanoid robot [55] has a human-like morphology
and a subset of the sensory capacities present in humans. It has
been recently equipped with a whole-body skin [52] giving us
the opportunity to address the problem of peripersonal space
development in a biomimetic way. We are indeed in the unique
position to learn how the proprioceptive-tactile and visuo-tactile
associations are generated and let the robot autonomously es-
tablish a margin of safety through interaction with the environ-
ment.

In this thesis, we present a solution to this problem by propos-
ing an architecture that achieves this functionality thanks to a
“spatial” receptive field anchored to each taxel (tactile element)
on the robot skin. By exploiting a temporal and spatial congru-
ence between a purely visual event (e.g. an object approaching
the robot’s body) and a purely tactile event (e.g. the same ob-
ject eventually touching a skin part), a representation will be
learned that allows the robot to autonomously establish a mar-
gin of safety around its body through interaction with the en-
vironment - extending its cutaneous tactile space (the artificial
skin) into the space surrounding it.



3T H E I C U B H U M A N O I D R O B O T
( A N D S O M E O F I T S K E Y
C O M P O N E N T S )

In this chapter, an overview of the iCub humanoid robot is pro-
vided. The description reported here will not cover all the as-
pects about the design of the iCub’s hardware and software
architecture, but it will rather focus on the core elements that
have been proven essential for the fulfillment of this work. As
such, they will be generically referenced by any of the chap-
ters in this thesis; if needed, some other aspects of the iCub
platform will be detailed in the corresponding sections.

The iCub (Fig. 1) is an open-source platform for research
in cognitive robotics. The following sections will describe the
key components relevant for this work, divided into Section 3.1
about the hardware (arms and hands mechanics, artificial skin,
joint angle sensing, eye and camera setup), and Section 3.2
about the software (YARP middleware, model of the robot’s
kinematics, visual processing, and finally cartesian control for
arms and gaze).

3.1 hardware

3.1.1 arms and hands

The iCub is equipped with 7 and 9 degrees of freedom for
arms and hands respectively. Four brushless motors control the
upper part (three command the shoulder and one the elbow),
whereas the three motors of the wrist are brushed. For the pur-
poses of this thesis (see Chapter 5), it is worth noting that the
shoulder joint presents a non-standard design: it is character-
ized by a cable differential mechanism with a coupled trans-
mission system. Three coaxial motors housed in the upper torso
move pulleys to generate the spherical motion of the shoulder
[59].

10



3.1 hardware 11

Figure 1: The iCub humanoid robot. It is composed by 53 degrees of freedom,
a set of two independently moving cameras, and an artificial skin
that covers most of its body.
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Figure 2: Pressure-sensitive skin of the iCub. iCub forearm with exposed skin
patches.

3.1.2 joint angle sensing

Proprioceptive inputs in the iCub simply consist in angular po-
sition measurements in every joint. For most joints, they are
provided by absolute 12bit angular encoders (see Parmiggiani
et al. [60] for details).

3.1.3 artificial skin

The iCub was recently equipped with an artificial pressure-
sensitive skin covering most of its body parts [52]. The latest
iCub version contains approximately 4000 tactile elements (tax-
els) – in the fingers, palms, forearms and upper arms, torso,
and lately also in the legs and feet. The iCub forearm and hand
with exposed skin is shown in Figure 2.

A spatial calibration of the skin of the forearm with respect
to the iCub kinematic model has been performed in Del Prete
et al. [18] – the pose of each taxel in the reference frame of the
corresponding link is available.
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Figure 3: Kinematics of the iCub’s torso and head. The upper body of the iCub
is composed of a 3 DoF torso, a 3 DoF neck and a 3 DoF binoc-
ular system, for a total of 9 DoFs. Each of these joints, depicted
in red, are responsible for the motion of the fixation point. An In-
ertial Measurement Unit (IMU) is present in the head (the green
rectangle in figure); its motion is not affected by the eyes.

3.1.4 head and eyes

Vision on the iCub is provided by two cameras contained inside
the robot’s eyeballs. The neck of the robot has three degrees of
freedom (DoFs) and there are three additional DoFs in the eyes
allowing for tracking and vergence behaviors. The movement
of the eyes is coupled, following an anthropomimetic arrange-
ment. With appropriate calibration, depth information can be
extracted from binocular disparity.
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3.2 software

3.2.1 yarp

YARP (Yet Another Robot Platform) [24] is the middleware the
iCub comes equipped with. It is a set of open-source libraries
that support distributed computation under different operative
systems1. YARP facilitates code reuse and modularity by de-
coupling the software from the specific hardware (using Device
Drivers) and operative system. Moreover, it provides an intu-
itive and powerful way to handle inter-process communication
(using Port objects). Furthermore, YARP provides mathematical
and image processing libraries.

3.2.2 kinematic model and coordinate transfor-
mations

The iCub software2 is another set of libraries and tools that
have been used extensively in this work. Most important for the
pursuance of the goals of this thesis is iKin [63], a library that
provides a kinematic modeling for the iCub robot. It is based
on the Denavit-Hartenberg convention [19], and is schematized
in Figure 4

3. Each joint is modeled as a rotational joint with
a quadruplet of parameters Φ = {a, d, α, ϑ}; for any joint
configuration q = ϑ̂, this corresponds to a fixed rototranslation
matrix from one link to its subsequent, up to the end effector.

3.2.3 visual processing

The work presented in Part III has taken advantage of a series
of software tools available in the iCub repository for visual pro-
cessing. They are listed below:

• 2D Optical Flow (motionCUT) [9]: it modifies the pyramidal
Lucas-Kanade algorithm [49] to detect independent mov-
ing points over a selectable grid of nodes. It is designed to
work with moving cameras, such as those available on the
iCub.

• 2D Particle Filter Tracking [83]: it is a single-object tracker
that uses a color histogram-based observation model. The
particle filtering algorithm keeps track of the object by

1 The YARP source code is available at www.github.com/robotology/yarp
2 Most of the iCub software is available at this link: www.github.com/robotology/. The

core software modules are available at www.github.com/robotology/icub-main.
3 An in-depth analysis of the standard DH notation is available in Appendix A.

www.github.com/robotology/yarp
www.github.com/robotology/
www.github.com/robotology/icub-main
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Figure 4: A schematics of the kinematic model of the iCub. With the exception of
the hands and the head, each joint is visualized as a reference
frame centered in its axis of rotation. Image courtesy of Laura

Taverna and Jorhabib Eljaik.
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maintaining a probability distribution over the state of the
system it is monitoring, in this case the object.

• Stereo Disparity Module [23]: it wraps the Hirschmüller [39]
algorithm in order to build a depth map on top of the
iCub’s stereo vision system. It has been made robust to
head and eyes movement by exploiting the encoders infor-
mation and updating the camera reference system.

3.2.4 cartesian control for arms and gaze

The iCub is provided with a cartesian controller for the arms and
a gaze controller for the head and the vision system. They pro-
vide an interface that exploits an inverse kinematics solver in
order to control the arms and the head directly in the opera-
tional space, by querying 3D points instead of configurations
at the joint level. Both have been developed by Pattacini et al.
[62] in conjunction with the iKin library [63].



Part I

T H E P E R I P E R S O N A L
S PA C E O N T H E I C U B

In this part, we provide an overview of the proposed ap-
proach. It draws inspiration from human development,
capitalizing above all on the role of movement toward
own body (self-touch or double touch) that gives rise to
unique cross-modal contingencies that allow the agent to
learn about the spatial properties of its body and the space
around it. The robotics implementation departs in many
respects from the mechanisms that presumably operate in
primate brains. Instead, the correspondence is often estab-
lished on a behavioral level, while modules that were engi-
neered for the robot are exploited to support the function-
ality needed. We are referring in particular to a complete
model of the robot’s kinematics and availability of coordi-
nate transformations that map all information into a com-
mon reference frame. The implementation of the double
touch itself (from Roncone et al. 2014) is taken as a prim-
itive even if its workings were not biologically motivated.
It is the learning/calibration of the spatial receptive fields
around individual taxels that is primarily addressed in its
thesis and related to biology.

Reference paper: Alessandro Roncone, Matej Hoffmann, Ugo
Pattacini, Luciano Fadiga, and Giorgio Metta. Periper-
sonal space and margin of safety around the body: learn-
ing tactile-visual associations in a humanoid robot with
artificial skin. Manuscript, 2015.



4P R O P O S E D A P P R O A C H :
M I L E S T O N E S F O R T H E
D E V E L O P M E N T O F
P E R I P E R S O N A L S PA C E I N
H U M A N S A N D R O B O T S

In this chapter we describe our approach, which proposes a pu-
tative gradual development of peripersonal space in humans as
well as in robots. We assume the availability of basic behaviors
(that will be therefore considered “innate” – Section 4.1), and
we suggest a series of milestones throughout which a generic bi-
ological “agent” (human or animal) has to go through in order
to succeed in developing a peripersonal space representation
(Section 4.2). In Section 4.3 we will go through the description
of the software modules that need to implemented in order to
build up behaviors that are correspondent to the putative neu-
rophysiological correlates described in Section 4.2.

The scenarios investigated in Section 4.3 are parallel to those
experienced by humans and animals – thanks to the anthro-
pomimetic nature of the iCub – and should thus speak directly
to the mechanisms of peripersonal space representations in pri-
mates that have been subject of intensive investigations in cog-
nitive psychology as well as the neurosciences over decades.
Importantly, the developmental trajectory leading to the acqui-
sition of these representations is largely unknown. The devel-
opment of reaching may constitute one key factor in this mech-
anism (e.g. Sclafani et al. [79]); the exploration of own body
may be another (e.g. Rochat [69]). In the work presented here,
we mimicked the latter trajectory by considering first the self-
touch behaviors and adding encounters with external objects
later on.

This chapter will act as a scaffold for the rest of this thesis. In
particular, in Part II we investigate aspects related to the imple-
mentation of the innate capabilities described in Section 4.3.1,
whereas in Part III we detail the core contribution of this the-
sis, that is the first, to our knowledge, attempt at building a
tactile-visual representation on a humanoid robot.

18
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4.1 basic behaviors that lead to the devel-
opment of higher level multimodal as-
sociations

In order for a subject to develop the necessary tactile-motor-
proprioceptive-visual associations needed for it to build up a
peripersonal space representation, we speculate it already mas-
ters a set of basic motor behaviors. We can harmlessly assume
these behaviors to be “innate” to the agent under consideration,
in the sense that they can be either already available to the sub-
ject at birth, or that they have been developed during earlier
stages of growth.

Hereafter, two test cases are described, with both the pur-
pose of showcasing useful examples for the subsequent overall
discussion, and the goal of fostering the idea that this kind of
behaviors is vital for the development of the peripersonal space
in humans as well as in animals.

4.1.1 motor-proprioceptive associations : the spi-
nalized frog’s wiping reflex (from Schmidt

and Lee [77])

Early in the thinking about motor control, the spinal cord was
viewed as a “freeway” that simply carried impulses back and
forth from the brain to the peripheral receptors and muscles.
Gradually, evidence that the spinal cord contains central pat-
tern generators for gait and other movements pointed toward
the cord as a complex organ where much of motor control is
structured. Further evidence suggests that the spinal cord is
responsible for considerable integration and processing of sen-
sory and motor information.

The hindlimb wiping reflex of the frog is an example of a basic
behavior that is organized at the spinal level. Figure 5 shows a
frog making a wiping response as a consequence of either an
electric or a chemically noxious stimulus placed on its forelimb.
Fukson et al. [27] and Berkinblit et al. [6] showed that the frog
is capable of performing these hindlimb responses when spinal-
ized (i.e. with a transection that separates the cortex from the
intact spinal cord). The response always begins with a move-
ment of the hindlimb toe to the region of the shoulder area,
followed by a rapid wiping action that is aimed at the elbow.

Interestingly, the animal can use sensory information from
one part of the body (the elbow) to trigger an action pattern



4.1 basic behaviors 20

Figure 5: In the spinalized frog, the hindlimb response to wipe an acid stim-
ulus from the elbow is aimed to various elbow positions without
the involvement of voluntary control from the cortex. This reflex
was found to have two stages. During the first, the frog fixed the
hindlimb in an intermediate posture irrespective of forelimb posi-
tion. In the second, the movement depended on the forelimb posi-
tion, which determined the final posture of the hindlimb [27].

in some other part (the ipsilateral hindlimb), even when deaf-
ferentated (and thus with neither cortical involvement nor aware-
ness of the limbs’ actions). Furthermore, the animal produces
different wiping movements depending on the location of the
elbow at which the response is aimed. That is, the generator for
this response appears to modify its action depending on the
sensory information from the forelimb indicating the position
of the stimulus – the cord knows where the limbs are. Sugges-
tions that these behaviors also operate in humans have sparked
considerable debate, and to date the evidence is not entirely
clear on the issue [50]. We might expect that they likely would
operate in humans to some extent.

4.1.2 tactile-motor-proprioceptive-visual associa-
tions : self-touch in the early infancy

From birth, newborns are subject to contrasting perceptual and
sensorimotor events. These events potentially inform them about
their own body as well as their interaction with the nearby
space. It is believed that young infants’ propensity to engage
in self-perception and systematic exploration of the perceptual
consequences of their own actions plays an important role in
the intermodal calibration of the body and the space surround-
ing it. The process of self (or double) touch provides correspon-
dences between different forms of sensory information which
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may underpin a basic structural model of the body as a physical
object distinct from the outside world. Rochat [69] showed that
by 2–3 months infants appear to be attracted to and actively in-
volved in investigating the rich intermodal redundancies, tem-
poral contingencies, and spatial congruence of self-perception.
They engage in intermodal calibration of their own body, in or-
der to detect invariants and regularities in their sensorimotor
experiences.

Moreover, studies on patients with unilateral lesions showed
that self-touch can enhance sensory processing. Weiskrantz and
Zhang [86] reported a patient who could feel tactile stimula-
tion on the contralesional hand when she delivered them with
her ipsilesional hand, but not otherwise. Valentini et al. [84]
reported similar findings in a large sample of left and right
hemisphere stroke patients. Coslett and Lie [13] found that ex-
tinction of a left-sided tactile stimulus in two patients with
right hemisphere damage was ameliorated when the patients
touched the stimulated left part of the body with the right hand.
They suggested that the right hand could function as an ‘atten-
tional wand’, increasing the salience of events on the left side
of the body. However, their result could also be attributed to
integration between the experiences of the two hands as a re-
sult of self-touch. If stimuli delivered to joined hands become
in some sense inseparable, then an undetected stimulation of
the left hand might benefit from summation with a detectable
stimulus on the right hand.

4.2 milestones for the development of pe-
ripersonal space in humans and animals

In the following, we will investigate a set of stages in which
the agent is most likely to go through in order to develop more
complex forms of perception of its own body and the nearby
space. Our premise is to assume the availability of the basic
motor capabilities described in Section 4.1: that is, the subject
is able to independently execute a set of reflexive actions that
let it perform a double-touch scenario. For the purposes of this
thesis, with double touch we simply define an action directed
toward the self which is characterized by the concurrent activa-
tion of two different skin parts, i.e. the skin part of the active
arm (the one that touches) and the one belonging to the passive
arm (namely, the arm to be touched).
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4.2.1 “bare” or “blind” double touch (tactile-motor
associations)

In this scenario, the subject is equipped with a series of low-
level capabilities (the scratch reflex or a self-exploration mech-
anism described in Section 4.1) that generate purely reflexive
movements. These movements can give rise to a new mapping
which is not reflexive, but voluntary – in other words, the or-
ganism can learn to produce a specific tactile stimulation by
voluntarily repeating the same movement that has been pre-
viously triggered by the reflex. This presumably corresponds
to the shift from spinal control of reflexes to voluntary actions
controlled by the cortex.

At this stage, the agent is focused toward the development of
a pure tactile-motor representation (i.e. there is neither vision
nor proprioception in the loop). The subject is “blindly” execut-
ing the self-touching movements, with the passive arm that is
fixed and is simply recording an eventual contact coming from
the active arm.

4.2.2 invariance with respect to the configuration

of the passive arm (tactile-motor-proprioceptive
associations)

This step generalizes the framework of Section 4.2.1 by achiev-
ing the double touch even if the passive arm changes its con-
figuration in space (but remains static during the execution),
similarly to the targeted trajectory showed by the spinalized
frog in Section 4.1.1. In this case, different motor commands
will be sent to the active arm in order to succeed in the double
touch. The representation is not purely tactile-motor anymore,
because it involves the proprioceptive information coming from
the passive arm in order to decode its position in space.

4.2.3 double touch with vision (tactile-visual associ-
ations)

The developmental scenario here is similar to what the subject
experiences into Section 4.2.2, but now the visual system comes
into place: the subject is able to visually perceive the active arm
coming onto the passive one in its visual system.

In this milestone, both the head system (neck + eyes) and
the passive arm are fixed: the subject is looking at the body
part that is going to be touched, without changing its config-
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uration over the course of the action. The agent can thus start
building up a purely visuo-tactile association able to provide a
prediction of the incoming contact based upon the visual stim-
ulus. This step is crucial for the development of a peripersonal
space representation, since at this stage the “motor” informa-
tion about the position of the active arm is replaced by the “vi-
sual” information coming from the head system.

4.2.4 invariance with respect to the configuration

of the passive arm (tactile-motor-proprioceptive-
visual associations)

At this stage, the tactile-visual association is generalized toward
the inclusion of the proprioceptive modality into the represen-
tation, with a scenario similar to Section 4.2.2: the passive arm
is in an arbitrary configuration (but remains static during the
intercourse of the self-touching behavior), and the propriocep-
tion of the passive arm’s position in space is needed in order to
perform the double touch and keep record of where the move-
ment will be heading to. The head plant is still not moving and
is fixating the point to be touched.

4.2.5 invariance with respect to the configuration

of the head plant (tactile-motor-proprioceptive-
visual associations)

In this scenario, the head system configuration has been freed,
giving the agent the possibility of tracking the active arm com-
ing onto the passive arm throughout the whole self-touching
behavior. The proprioception is thus needed not only for cod-
ing the arbitrary position of the passive arm in space, but also
for incorporating the different configurations of the neck and
eyes plant into the representation.

4.2.6 from the self to the external world : adapta-
tion of the model to external stimuli in or-
der to create a margin of safety around the

body (tactile-proprioceptive-visual associations)

After a proper tactile-visual-proprioceptive association has been
learned, this can be generalized and applied to external (i.e. not
self-generated) stimuli as well - objects coming onto the skin. At
this stage, the subject is able to perform a predictive behavior
thanks to the skills acquired at the previous stages (the learned
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representation can be also updated). This stage is purely per-
ceptive.

At this stage, the goal is to create a visuo-tactile association
for the external world, able to give a prior-to-contact activation
of the visuo-tactile receptive fields when an incoming object
is presented. It is the first step toward the building up of a
“margin of safety” around the body: by developing a prediction
of a forthcoming contact on the skin, the agent is building up a
safety margin that will prove advantageous for its survival.

4.2.7 exploitation of the learned associations :
avoidance behaviors

The representations learned at previous stages are purely pas-
sive, i.e. they don’t implicate any active contribution of the taxel
involved into their development. In this stage, they are instead
used to generate active avoidance behaviors. These avoidance
movements can either pertain to the own body (i.e. avoiding
self-collisions) or to the external world (i.e. avoiding incoming
potentially harmful objects). The consequence is to effectively
exploit the margin of safety around the body that has been
learned in the previous stage (Section 4.2.6).

It is worth noting that, at this step, the tactile information is
not used anymore, because it was needed only at learning stage.
Furthermore, activity – i.e. motor commands – for what was up
to now the passive arm is needed, since it has to actively move
away from an incoming event.

4.2.8 exploitation of the learned associations :
reaching / catching behaviors

One of the main goals of the peripersonal space has been to
create a margin of safety around the body [33]. Nonetheless, the
peripersonal space helps to coordinate movements regarding
purposeful actions toward nearby objects as well. This latter
stage is headed toward the development of movements that are
directed toward the nearby object, rather than away from it. It
effectively results in reaching with arbitrary body parts.

4.3 milestones for the development of pe-
ripersonal space in robots

In this section, we list the steps needed for our robotics plat-
form (i. e.the iCub, Chapter 3) to develop a series of capabil-
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ities comparable to what described in Section 4.2. Crucial for
the pursuit of the road map presented in Section 4.2 has been
the implementation of a double-touch paradigm on the iCub hu-
manoid robot1. Such a paradigm, if implemented on a robot,
presents the same key advantages found in humans, because it
gives access to a more structured information. It provides a way
to achieve multimodal integration, and the possibility to syn-
chronize sensory feedback coming from different modalities.
Furthermore, it can be used for the automatic self calibration
of the robot, in order to comply with an ever evolving platform
able to cope with changes in its structure – something that the
robotics community strives for.

It is worth noting that we assume three basic premises:

(i) the goal is not to create a software as similar as possible
to its biological counterpart, but to extrapolate the salient
points of interest of peripersonal space in biological sys-
tems. Hence, a PPS implementation on the iCub should
potentially try to maximize a sort of congruency property,
rather than a similarity property. Consequently, the archi-
tecture presented has not to be seen as a model of a par-
ticular brain network.

(ii) we are going to rely heavily on a centralized Cartesian
space representation where information from different mo-
dalities (proprioceptive, motor, visual, tactile) can be map-
ped into. To what extent this is the case for the brain is
debatable, but this is one of the strengths of our approach.

(iii) in pursuance of the previous points, and loosely inspired
by neurophysiological and psychological findings, this re-
sults in our own interpretation of the concept of periper-
sonal space – one that fits suitably with a robotic platform.
With reference to Section 2.1, there is considerable debate
on what peripersonal space ultimately means, how it in-
terfaces with the body schema, and to what extent it re-
lates to the motor system. In the following section, we will
generally approach the more general problem of periper-
sonal space representations by focusing on the learning
of a visuo-tactile representation of the nearby space, that
will be then exploited on a later stage for reaching and
avoiding with whole body surface.

1 A paper related to this has been presented in Roncone et al. [72], and will be more
thoroughly detailed in Part II.
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The following Sections describe a comparison between the
milestones we listed in Section 4.2 and the proposed approach
on the real platform, i.e. the iCub. We will not go deep into the
details of the implementation, but we will highlight the func-
tional capabilities and the theoretical assumptions our imple-
mentation is based on.

4.3.1 “bare” or “blind” double touch + invariance

with respect to the configuration of the pas-
sive arm (tactile-motor-proprioceptive associations)

The double touch paradigm will be detailed in Chapter 5; a de-
piction of the scenario is illustrated in Figure 6. The desired be-
havior is analogous to the self-exploratory capabilities needed
by the biological agent and described in Section 4.2.1: that is,
an action aimed at stimulating concurrently two different skin
parts belonging to two different kinematic chains. Due to the
physical constraints our robotic platform presents, we will fo-
cus on actions involving the distal parts of the upper limbs, i.e.
forearms and hands.

To this end, we can take advantage from a set of existing
software tools (see Section 3.2 for details):

– Forward Kinematics + Skin Calibration for the passive arm,
in order to compute the taxels’ (“skin receptor”) coordi-
nates in the centralized Cartesian Space (Root FoR), and
determine a point in space where to reach.

– Inverse Kinematics for the active arm, to compute the joint
configuration needed to accomplish the task, given the tar-
get 3D cartesian point.

The double-touch scenario does not take into account any dis-
tinction between reflexes and voluntary action. Furthermore,
everything is relying on the existing kinematic model of the
robot (links’ lengths and joints’ orientations are known) and
explicit mathematical coordinate transformations. Nothing is
learned, even though we are planning to do that in the future
(see Chapter 10 for details). It is worth noting that, as shown
in Figure 6, this implementation lets us automatically adapt
the behavior to different arm configurations, since current joint
positions automatically enter forward kinematics. We can thus
safely assume that once the step described in Section 4.2.1 is im-
plemented, we will be able to automatically abstract our frame-
work in order for it to be invariant to the configuration of the
passive arm.
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Figure 6: Double Touch paradigm on the iCub humanoid robot. By taking advan-
tage of the forward and inverse kinematics model available on the
iCub software repository, the double touch paradigm is able to
automatically abstract from different passive and active arm con-
figurations. See text for details.
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At this stage, the robot can learn to associate the tactile stim-
ulation occurring at the passive arm (i. e.activation of a skin
patch) with the motor signal commanded at the active arm (via
a convenient conversion into the robot’s Root frame of refer-
ence). It will, in other words, build up a tactile-motor-proprio-
ceptive association similar to what developed by the biological
agent (Section 4.2.2).

4.3.2 double touch with vision + invariance with

respect to the configuration of the passive

arm and the head plant (tactile-proprioceptive-
visual associations)

The experimental scenario is the same as the one described in
Section 4.3.1, but now instead of taking into account the “motor
signal” issued to the active arm in order to perform the double
touch movement, visual information is used. The end effector
belonging to the incoming arm (in our case, the tip of its index
finger) will be visually detected thanks to a marker placed onto
it.

At this stage, crucial is the knowledge of a complete kinematic
model of the robot: in particular, the forward kinematics relative
to the head plant that is used to transform the visual input into
the Root FoR. Furthermore, a visual tracking system is needed in
order for the robot to successfully track the active arm during
the experimental session. This will be composed by a 2D tracker
(see Section 8.4.3 for details) and an existing gaze controller (cf.
Section 3.2.4).

This milestone is crucial in the development of a tactile-pro-
prioceptive-visual association able to provide a prediction of the
incoming contact based upon the visual stimulus alone. It is
worth noting that this representation needs to proficiently com-
pensate for errors in the kinematic model, even though the kine-
matic model is still required to perform the necessary trans-
formations. As highlighted Section 4.3.1, also in this case our
approach lets us automatically adapt the behavior to different
neck + eye configurations, as well as different postures of the
passive arm.
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4.3.3 from the self to the external world : adapta-
tion of the model to external stimuli in or-
der to create a margin of safety around the

body (tactile-proprioceptive-visual associations)

At this stage, the experimental scenario described in Section
4.3.1 and 4.3.2 will be provided with the possibility to visually
track not only internal, self-generated movements, but also any
external object present in the nearby space and coming toward
the robot. This scenario envisages the development of a general-
purpose tracker in order to perceive potentially harmful objects
coming toward the body. The representation learned in the pre-
vious step can be abstracted from the self to the external world,
in order to provide a prior-to-contact activation of the tactile-
visual RFs that fires not only with a self-generated incoming
stimulus, but with an external source as well. That is, regard-
less of the source of information the robot is relying on, the
tactile system is provided with a representation that is able to
activate a specific part of the skin based upon an estimation of
the probability of that skin part of being eventually touched by
an incoming event.

4.3.4 exploitation of the learned associations :
avoidance and catching behaviors

In this step, the representation that have been gradually built
up during previous stages is exploited in order to demonstrate
its suitability in the construction of a margin of safety around
the body. Furthermore, as described in Section 4.2.8, the same
exact representation can be similarly used for the dual purpose
of reaching with arbitrary body parts for objects in the nearby
space. To this end, a proper avoidance/catching controller needs to
be implemented. The – either avoidance or catching – motion
is achieved thanks to a motor control placed onto the taxel that
is firing: if an incoming event is activating a specific taxel, the
effect will be that the taxel will either push the arm away from
the incoming object (during the avoidance behavior), or pull it
toward it (in the case of catching behavior). The implementation
will be detailed in Part III.
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T H E D O U B L E T O U C H
PA R A D I G M A S A

B A S I C B E H AV I O R F O R
T H E D E V E L O P M E N T
O F P E R I P E R S O N A L

S PA C E

Reference paper: Alessandro Roncone, Matej Hoffmann, Ugo
Pattacini, and Giorgio Metta. Automatic kinematic chain
calibration using artificial skin: self-touch in the iCub hu-
manoid robot. In Proc. IEEE Int. Conf. Robotics and Automa-
tion (ICRA), pages 2305–2312, 2014.
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I C U B H U M A N O I D R O B O T

5.1 introduction

From a robotic perspective, double-touch can be viewed as the
closure of an open kinematic chain. Clearly, robotic manipula-
tors are designed with a different goal in mind – reaching in
the operational space – and self-collisions are typically not de-
sirable in the first place. In what follows, we will be specifically
concerned with the case of self-collision, or double-touch, of
two manipulators whose operational spaces are overlapping –
like two arms of a humanoid robot. In order for the two end-
effectors to collide, standard techniques could be used: a dual
inverse kinematics task for each of the arms with the target set
to any point of the shared operational space. However, a very
accurate model is necessary to achieve contact. In addition, we
are interested in achieving successful contacts between differ-
ent parts of the manipulators, not only their the end-effectors.
Hence, other parts of the body (in this paper the forearm) need
to be touched by the contralateral arm.

This chapter is structured as follows: Section 5.2 describes the
experimental protocol used for the accomplishment of this task.
Section 5.3 introduces the problem as seen from a classical point
of view, whereas Section 5.4 presents our proposed solution to
the problem. An application of this method is then performed
in Chapter 6.

5.2 experimental protocol

The experimental protocol is schematically illustrated in Fig-
ure 7. The experimenter touches the robot on a skin part (the
left forearm in the picture). This is detected by the robot’s tactile
system; as described in Chapter 3, a skin calibration (Del Prete
et al. [18]) and the kinematic model of the iCub (Pattacini [63])
let us locate the position of the contact in the Root FoR. The
position of the active taxel (in fact the average position of all
the taxels that are stimulated) is then recorded to be used later
by the inverse kinematics solver. The arms start moving toward

31
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the self-touch configuration. The session is considered success-
ful if a double touch actually occurs on the robot, i.e. if a contact
is detected by the robot on both the arms (namely, the skin part
that has been stimulated by the experimenter and the tip of the
index finger of the contralateral arm, cf. Figure 7b).

(a)

(b)

Figure 7: Self-touch experiment. (a) The iCub touched on its left forearm by the
experimenter; corresponding skin activation of the forearm shown
on the top right. (b) The iCub touching the previously stimulated
point using the index finger of the contralateral arm. In this case,
a concurrent activation of both the left forearm (top right) and the
right hand’s index fingertip (bottom right) is present.
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EE2

O2O1

EE1

PoC

Figure 8: Classical Approach to self collision. The two arms, with origins O1

and O2, corresponding to the shoulders of the iCub, and end-
effectors EE1 and EE2 located in the palms of its hands, are con-
trolled in parallel. The blue cross is the point to be touched (left
forearm), whereas the red one is the final Cartesian point in which
the two arms get in contact (PoC); the grey links are either not
controlled or fixed.

5.3 difficulties of classical approach to

self-collision of two robotic manipu-
lators

A schematic illustration of this situation is depicted in Figure 8:
without loss of generality, we can assign the point to be touched
(blue cross) to the left forearm; thus, the goal is to reach this
point with the end-effector EE1 of the contralateral arm (the
DoFs in the schematics do not match those of the real robot).
In this case, we are facing the following difficulties:

i Limited number of Degrees of Freedom (DoFs) for the task and
kinematic constraints. The closer the desired point of con-
tact to the base of its kinematic chain (i.e. O2 in Figure 8),
the smaller number of DoFs are usable to position the ma-
nipulator in a suitable configuration for being reached by
the contralateral arm. In addition, the operational space
of a manipulator is generally bigger at a certain distance
from the base and shrinks as one moves toward the origin
of the kinematic chain. However, since many self-touch
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configurations are located closer to the origin of the chain,
this results in poor reachability/manipulability measure.

ii Defining the point-of-contact (PoC) in operational space. In view
of point i), there is only a limited number of configurations
that succeed in achieving a self-touch and sometimes no
solution exists. Moreover, the coordinates of the solution
are unknown. Therefore, a suitable heuristics would be
needed in order to find the common solution of two in-
verse kinematics problems.

iii Undesired self-collisions. Apart from the specifically reques-
ted contact point, collisions between other parts can occur.
Some body parts are not covered by skin (e.g., joints) and
some parts, like fingers, are very fragile.

5.4 reformulating the kinematic chain :
from two fixed-base parallel chains to

a single floating-base serial chain

The above mentioned difficulties can be significantly mitigated
if the problem is reformulated: instead of parallel control of two
kinematic chains, the task can be transformed into the control
of a single chain that spans from the point to be touched to the
contralateral end-effector. The new situation is schematically
depicted in Figure 9. Under this reformulation, the task is to
move the end-effector EE to the originO of the kinematic chain.

Compared to the previous situation, this brings about one
key advantage, i.e. the final Cartesian PoC of the two arms is
defined implicitly since the base of the kinematic chain is float-
ing. The inverse kinematic solution will move both the base and
the end-effector in order to make them converge at a specific
point of the 3D operational space. To this end, first, one part
of the kinematic chain is “reversed” – because it has to be tra-
versed “upside down”, from the point to be touched up to the
shoulder (O2 in Figure 8). Second, an inverse kinematic solver
has to be employed to get the solution to this task. The next
section describes the reversal of the kinematic chain, whereas
the design of the solver and the controller will be detailed in
the next Sections 5.4.2 and 5.4.3.

5.4.1 the reversion of the kinematic chain

The description of the kinematics is typically based on the De-
navit–Hartenberg (DH) convention [19] with four parameters for
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EE

−−→
zEE

O

−→
nO

PoC

Figure 9: Proposed Approach to self-collision. The problem has been reformu-
lated into a single floating-base serial chain, with origin O in the
point to be touched and end-effector EE in the contralateral arm.
Similarly to Figure 8, the blue cross is the point to be touched,
whereas the red one is the final PoC; the grey links are either not
controlled or fixed.

each joint i belonging to the chain: Φi = {ai, di, αi, ϑi}. With
an initial choice of axes, it is subsequently possible to compute
a homogeneous transform matrix to describe each relative roto-
translation from one joint to the next one. However, although
these matrices have an inverse, they cannot be transformed into
a set of valid DH parameters suitable for the reversed kinematic
chain. In the following, we propose a method to compute a DH-
compatible set of parameters.

Figure 10 and Figure 11 depict a comparison between the
original DH convention for the forward chain and the proposed
approach for its reversed version. Figure 10 illustrates the ref-
erence frames’ attachment for a generic joint i belonging to a
chain pointing from left to right, whereas Figure 11 describes
the proposed solution for the reversed chain (traversed from
right to left).

In order to reverse the chain, we changed the order of the
joints such that the end-effector of the original direct chain be-
comes the origin of the new one. However, the placement of the
reference frames has been kept the same. This requires a cor-
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Oi−1

xi−1

yi−1

zi−1

Oi

xi

ziyi

di

ϑi

ai

αi

JOINT i− 1 JOINT i JOINT i+ 1

Figure 10: Original Denavit–Hartenberg convention. The homogeneous roto-
translation matrix between the two frames of reference Oi−1 and
Oi is defined by a set of four parameters Φi = {ai, di, αi, ϑi}.
An in-depth analysis of the standard DH notation is available in
Appendix A.

Oi

xi

yi
zi

Oi−1

xi−1

zi−1
yi−1

d̂i

ϑ̂i

âi

α̂i

JOINT i+ 1 JOINT i JOINT i− 1

Figure 11: Proposed solution for the reversion of a kinematic chain expressed in
DH notation. In order to “reverse” the original kinematic chain,
the reference frames for the links have been kept coincident with
the original ones.
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responding change of the parameters of every joint. The new
parameters, Φ̂i = {âi, d̂i, α̂i, ϑ̂i}, are calculated as:

〈â0, â1, . . . , ân〉 = 〈−an,−an−1, . . . ,−a0〉〈
d̂0, d̂1, . . . , d̂n

〉
= 〈−dn,−dn−1, . . . ,−d0〉

〈α̂0, α̂1, . . . , α̂n〉 = 〈−αn,−αn−1, . . . ,−α0〉〈
ϑ̂0, ϑ̂1, . . . , ϑ̂n

〉
= 〈−ϑn,−ϑn−1, . . . ,−ϑ0〉,

(1)

whereΦi = {ai, di, αi, ϑi} is the original set of DH parameters
for the i-th link.

The standard transform matrix for the direct chain dDH is
shown below:

dDH =


cϑ −sϑcα sϑsα acϑ

sϑ cϑcα −cϑsα asϑ

0 sα cα d

0 0 0 1

 (2)

Under the convention defined above, the transform matrix for
the reversed chain, rDH corresponds to the inverse of the stan-
dard transform matrix (i.e. dDH−1), but with the new set of
parameters Φ̂i. Substituting Φi with Φ̂i in dDH−1 thus gives
the following form for rDH:

rDH =


c
ϑ̂

−s
ϑ̂

0 â

s
ϑ̂
cα̂ c

ϑ̂
cα̂ −sα̂ −d̂sα̂

s
ϑ̂
sα̂ c

ϑ̂
sα̂ cα̂ d̂cα̂

0 0 0 1

 (3)

Under this approach, the parameters lose their physical mean-
ing (those related to lengths, such as âi and d̂i, become nega-
tive), but the geometrical representation is correctly preserved.
In addition, the existing machinery for the kinematic compu-
tation (e.g. the differential kinematics) can be maintained, be-
cause the Jacobians are still dependent on the same parameter
(i.e. ϑ̂i for revolute joints)1.

1 In the case of differential and higher order kinematics, it is worth noting that with
the proposed approach the axis of rotation of the i-th link is preserved, but the joint
will rotate in opposite direction. Thus, each Jacobian matrix will carry opposite sign
with respect to the Jacobian expressed in the original D–H notation.
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5.4.2 inverse kinematics solver

The task – in the formulation proposed above – is an inverse
kinematic resolution of a serial chain with a floating base. Hence,
we consider the problem of computing the values of joint an-
gles q∗ ∈ Rn such that the end-effector reaches a given po-
sition xd ∈ R6 (we are considering the desired position and
orientation as a single 6D vector, rotations are described by the
axis-angle representation). In addition, q∗ has to satisfy a num-
ber of constraints, expressed as a set of inequalities. Formally,
the problem can be stated as follows:

q∗ = arg min
q∈Rn

〈
nO, zEE

〉
=

= arg min
q∈Rn

{
‖nO‖ · ‖zEE‖ · cos(α)

}
s.t.

‖Kx(q) −O‖2 < εql < q < qu
,

(4)

where:

– O is the origin of the kinematic chain (i.e. [0 0 0]);

– nO is a unit vector perpendicular to the first link of the
kinematic chain and originating in O;

– zEE is the z−axis of the end-effector, as specified in Fig-
ure 9;

– α is the angle between nO and zEE;

– Kx is the forward kinematic function that represents the
position of the end-effector;

– ql and qu are vectors describing the joints’ lower and up-
per limits.

The optimization criterion is thus the minimization of the
scalar product between the z−axis of the end-effector and a vec-
tor nO normal to the surface to be touched. Since both vectors
are of unit length, the optimization boils down to the minimiza-
tion of cos(α), that is the normal of the target and the z−axis of
the end-effector pointing in exactly opposite directions (where
α = π and cos(α) = −1). Further, the solution to Equation 4

has to satisfy a set of additional constraints: in particular, we
require that the end-effector’s position is coincident with the
origin of the kinematic chain (up to a certain tolerance ε), and
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that the solution lies between a set of lower and upper bounds
(ql,qu ∈ Rn) of physically admissible values for the joints. This
description of the problem entails that the final position and
joint limits are always satisfied (being a constrained optimiza-
tion problem) whereas the orientation of the end-effector may
have a residual error (the minimum cost may not be zero).

It is worth noting that the design choice of posing the inverse
kinematics problem as a nonlinear constrained optimization
task makes it intrinsically scalable to any number of degrees
of freedom, i.e. it is possible to perform the task for any – suit-
able – kinematic chain without changing the software code base.
Moreover, it becomes easy to add new constraints to the solver
as linear or nonlinear inequalities either in task or joint space.
This has proven useful in the moment in which the nonlinear-
ities at the iCub shoulders were involved: similarly to what
developed by Pattacini [63] for his cartesian solver, we have the
need of constraining the solution to the configurations that do
not break the tendons at the shoulder (see Section 3.1.1 for de-
tails about the hardware). To this end, three linear inequalities
are proficiently included into Equation 4 in the following form:

l 6 C ·qsh 6 L, (5)

where qsh is the vector describing the shoulder joints, C is a
proper coupling matrix, and l and L are the lower and upper
limits Equation 5 is imposing to the tendon lenghts.

Kinematically, the inverse kinematics task presented in Equa-
tion 4 can by explained as a reaching problem (the end-effector
reaches the origin) with orientation normal to the surface of
the touched point. The particular formulation of the problem
(namely, a serial chain with a floating base) implies that both
arms are automatically controlled in order to solve the task.
Since the iCub arms are redundant, the solver has a certain free-
dom to impose the final configuration while satisfying the joint
limit or collision constraints. Nonetheless, the solution we pro-
posed has dramatically increased the redundancy of the task:
the adoption of a single serial chain that spans from the point
to be touched up to the contralateral end-effector has further
increased the number of degrees of freedom available 2.

In order to solve the problem described by Equation 4, an
interior point optimization technique is used, in particular we

2 In our concrete case, where the point to be touched is located on the robot’s left fore-
arm, 12 DoF are used – 5 on the manipulator that is touched, 7 in the contralateral
one.
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employ IpOpt [85], a public domain software package designed
for large-scale nonlinear optimization problems.

5.4.3 controller

The motor control has been achieved by means of a simple po-
sition control in most of the joints. Two of them (namely, the
shoulder yaw and the elbow of the left arm) have been con-
trolled in impedance mode, in order to ensure more compliance
and thus intrinsic safety during contact.



6A P P L I C AT I O N S O F T H E
D O U B L E - T O U C H PA R A D I G M :
A U T O M AT I C K I N E M AT I C
C H A I N C A L I B R AT I O N U S I N G
A RT I F I C I A L S K I N

6.1 introduction

Practically all robots performing manipulation or reaching tasks
rely on models of their kinematics and dynamics. Their success
is largely determined by the accuracy of such models. This is
even more so if they operate with limited feedback, as it is often
the case when we consider humanoid robots in real-time inter-
action with the environment. The models are typically based
on mechanical design specifications (such as CAD drawings)
of the robot. However, inaccuracies creep in in many ways as
for example in the assembly process, in mechanical elasticity,
or simply because of cheap design or components. Therefore,
the actual model parameters of every robot exemplar have to
be found by means of a calibration procedure.

In this chapter, we will be concerned with calibration of the
standard Denavit-Hartenberg (DH) parameters that fully describe
the robot’s kinematics through a series of rotations and trans-
lations from the base of the robot up to the end-effector. If the
configuration of every joint is known, the full pose (3D position
and 3D orientation) of the end-effector can be obtained in the
base reference frame. However, in order to calibrate the robot’s
parameters additional information is required. This can be ob-
tained by observing the end-effector configuration (or several
of its components) w.r.t. the base. The literature provides vari-
ous examples of apparatuses that can measure one or more of
the components of the end-effector pose employing mechani-
cal, visual, or laser systems. An overview of these – so-called
open-loop calibration methods – is presented in [43, 42]. Alterna-
tively, physical constraints on the end-effector position or ori-
entation can substitute for measurements (cf. [43, 42] again for
an overview). As the robot is in contact for example with the
ground, these methods are called closed-loop. In fact, the prob-

41
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lem can be framed in such a way that the open- and closed-loop
methods are mathematically equivalent – the external measure-
ment systems can be modeled as additional joints and links
that close a virtual loop; in both cases the excess of sensed over
actual degrees of freedom is needed, as expressed by the cal-
ibration index [43], which at the same time defines the num-
ber of equations per pose that are available for calibration. Re-
cently, apparatuses extending the kinematic chain using a laser
pointer have become popular (e.g., [28, 45]). Different arrange-
ments have different calibration indices, accuracy, requirements
on the environment, and cost. Nevertheless, all of them invari-
ably require to know beforehand a number of quantities from
the robot’s environment (such as a measurement system with
a known pose w.r.t. the robot base, a fixed contact point in the
environment where the robot can be attached, a surface that is
known to be planar on which the robot can slide, etc.). These
conditions have to be present for recalibration to be performed.

This has motivated alternative solutions to the self-calibration
problem that are also “self-contained” and can be performed au-
tonomously by the robot. One option is self-observation using
a stereo camera mounted on the robot. This has been shown
in a humanoid robot in [37] and in [54] in a humanoid torso
setup. The limit of these approaches is usually to be found in
the accuracy of the pose observation from visual input. Spe-
cial markers need to be used and attached to known positions
on the robot, such as on the end-effector. Alternatively, inertial
sensors can be used. Xsens for example developed a wearable
setup for humans composed of several inertial measurement
units (IMUs) [71], which, however, requires a specific a priori
body model. Mittendorfer and Cheng [58] presented a method
that uses data from accelerometers distributed on the surface of
a robot (this matches the artificial skin they developed [56]) to
calibrate the DH parameters. Other approaches that do not rely
on an explicit given representation – like the DH parameters – ,
but that learn more implicit relationships between propriocep-
tive and visual variables, for example, have been also developed
(see [40] for a review).

In the following, we present an approach that closes the kine-
matic loop in a completely new way: i.e. by self-touch. Our
inspiration is in biology: infants do not have access to cali-
bration chambers or ground truth measurements. In addition,
in early infancy, the visual system is still immature, thus an
unlikely source of accurate calibration information. A possi-
ble “self-calibration” strategy entails therefore self-stimulation:
touching their own body gives rise to unique stimulation pat-



6.1 introduction 43

terns – tactile stimulation on the touching and the touched part,
together with corresponding proprioceptive feedback [69, 78].
From a robotics point of view, this constitutes a compact cali-
bration procedure that can be repeated at any given time and
that does not incur any additional cost. Furthermore, not only
the kinematic model, but also the geometry of the robot (its vol-
ume in space) can be learned. The new requirements induced
by this approach are: (i) the availability of tactile arrays on the
robot’s surface; (ii) a sufficient agility to permit self-touch (or
self-collision) configurations; (iii) the availability of a controller
– such as hybrid position-force control – that allows safe exe-
cution of the movements which generate self collisions. These
three conditions are satisfied by the iCub humanoid robot –
the experimental platform employed in this work. The method
proposed is however applicable to a much wider set of plat-
forms. First and foremost, solutions to robot tactile sensing are
now numerous (see [16] for a survey) – many of them with the
ambition of providing a portable solution that can be simply at-
tached to robots of any shape. Second, any robot that possesses
multiple limbs – especially humanoid robots – will be able to
self-touch (apart from pathological cases). Third, many robots
have force/torque sensing and corresponding controllers that
can actively control impedance, thus allowing for safe interac-
tions with the environment and with themselves (e.g., [17]).

We present a method for calibration using self-touch and de-
scribe its experimental validation. The theoretical contribution
consists in an advantageous transformation of the problem of
controlling two serial chains (like two arms of a humanoid
robot) to self-collide at a certain point in space into a single
floating-base serial chain that originates at the contact point
and ends in the “end-effector” of the other arm – the point that
is “touching”. Interestingly, this method (described in Chap-
ter 5) encompasses both open- and closed-loop calibration. If
different points on the robot’s skin are touched, an initial cali-
bration of the skin serves as a “metrology” to observe the 3D
position of the end-effector. This can be used for calibrating the
DH parameters only, or, simultaneously, to improve the calibra-
tion of the tactile array. Alternatively, keeping the same contact
point and varying the position of the joints constitutes a closed-
loop calibration setup, where the end-effector is constrained in
a known position. The advantage of our approach is that a large
number of such points are automatically available correspond-
ing to the skin sensors’ positions. The experimental validation
in this work uses the first method: contact points are varied and
corresponding joint configurations are recorded. Optimization
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(a) (b)

Figure 12: The iCub robot (left) and its kinematic structure (right).

of the DH parameters is then performed starting from different
initial configurations.

This chapter is structured as follows. In Section 6.2, the robot
and the scenario are presented. The experimental protocol and
the optimization problem are defined. The optimization exper-
iments are presented in Section 6.3, followed by Conclusions
and Future work (Chapter 7).

6.2 methods and experimental setup

The experimental platform we used for this work is the iCub.
The core elements crucial for the pursuit of this work have been
extensively presented in Chapter 3; please refer to Section 3.2.2
and Section 3.2.2 for a detailed description of the iCub artificial
skin and its overall kinematic modeling. The theoretical anal-
ysis of implementation of movements that generate controlled
self-collisions has been instead featured in Chapter 5. In the
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following, we present the data collection and optimization pro-
cedures for the update of the DH parameters.

6.2.1 data collection and optimization

6.2.1.1 Experimental protocol

The experimental protocol is similar to what presented in Sec-
tion 5.2 and in Figure 7. The double touch scenario is used to
collect suitable samples in order to perform a closed-loop cali-
bration. If the double touch is successful, the contact is detected
by the robot (on the touched skin part and on the tip of the in-
dex finger of the touching arm). The coordinates of this point
(relying on the skin calibration) are recorded together with the
current joint configuration, and constitute one data point that is
later used for subsequent optimization of the kinematic model.
Due to inaccuracies in the initial model, not all attempts re-
sult in a final self-touch configuration – these trials are ignored.
In total, 100 successful data points were collected in this way.
Then, in order to speed up data collection (only the final con-
figuration is important for the calibration), further 200 points
were collected by setting the joints to idle and generating the
self-touch configurations by the experimenters.

6.2.1.2 Problem formulation

Referring to Hollerbach et al. [42], a kinematic calibration has
to optimize the vector of DH parameters for the chain under
evaluation. It is given by:

Φi = {ai,di,αi,oi} , (6)

with:

– i ∈ [1,n];

– a, d, α the first three parameters of the DH formulation
(Appendix A);

– o the offset that specifies the positioning of the encoders
on the joints with respect to the DH representation. It is
part of the model that should be subject to calibration
and is therefore also included in the optimization (like in
Hollerbach et al. [42]).

In the experimental setup presented here, the kinematic chain
consists of 12 DoFs. With 4 parameters per joint, the number of
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Figure 13: Depiction of the kinematic chain optimization. The chain is closed on
one end through the skin (a fixed transformation from the taxel to
the wrist) and through the index finger on the other end (another
fixed transformation from the contralateral hand to the fingertip).

parameters to be optimized is thus 48 (see Table 2, first column).
A schematic illustration of this is depicted in Figure 13. The
kinematic chain is closed through two fixed transformations at
its ends (skin – white in the figure; index finger – green in the
figure). These transform matrices are kept constant and their
parameters are not optimized.

The parameter calibration is obtained by using the same non
linear optimizer described earlier (IpOpt – Wächter and Biegler
[85]). The cost is set in order to minimize the total position
error:

Φ∗ = argmin
Φ

M∑
m=1

‖ps −pe(Φ,ϑm)‖ , (7)

where:

– ϑm are the joint angles of the m-th sample as read from
the joint encoders (for a total of M = 300 samples);

– pe is the estimated position (as function of the joint angles
and the current parameter values);

– ps is the position of the end-effector as measured from the
skin.
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Figure 14: Initial vs. optimized kinematic chain. The initial parameters (CAD
values) shown in blue, the optimized in green. The chain is closed
through two fixed transformations: on one end through the skin
and through the index finger on the other end.

6.3 experimental results

Using the data set collected according to the procedure de-
scribed in the previous section, we conducted three optimiza-
tion experiments. They are described in the following sections.

6.3.1 exp. 1 - optimization of parameters from cad

model

In this experiment, the initial values of the DH parameters are
those from the CAD model. Assuming that the skin calibra-
tion is correct, these parameters can be used by the optimizer
with the aim of minimizing the error of the forward kinematic
function w.r.t. the position of the taxels. The result is shown in
Figure 14. The values after optimization can be seen in the “Exp
1” column of Table 2.

The measure of performance is the error on the end-effector
position – euclidean distance of the predicted position of the
end-effector to the taxel position from the skin calibration – as
shown in the first row of Table 1. As expected, here the improve-
ment is small owing to the accurate initial estimate of the DH
parameters derived from the CAD models. Nonetheless, the er-
ror in the task is reduced by 7.9%.
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Table 1: Error at the end-effector before and after calibration. For each of the ex-
perimental sessions listed in the first column (i.e. optimization from
CAD values, optimization with 10% noise and finally with 30%
noise), a comparison between the error at the end-effector prior (sec-
ond column) and after (third column) the calibration is provided.
The improvement is between 7.9% (Exp. 1) and 65% (Exp. 3).

Initial (m) Optimized (m)
Exp 1 0.0226 0.0208
Exp 2 (10% noise) 0.0819± 0.0299 0.0377± 0.0139
Exp 3 (30% noise) 0.1919± 0.0301 0.0664± 0.0175

6.3.2 exp. 2 and 3 - optimization with 10% and 30%
noise on initial values

The initial parameter values in Section 6.3.1 are naturally al-
ready reasonable guesses of the real parameters. In order to fur-
ther test our proposed method, we have conducted additional
experiments with more noisy estimates of the initial parame-
ters. Therefore, we perturbed the CAD parameters as follows:

Φn
i = p ∗ uniform[−1; 1] ∗Φi +Φi

p = [0.1, 0.3]
(8)

where:

– Φn
i is the new set of perturbed parameters;

– p is the amount of noise with a uniform distribution (ef-
fectively 10% or 30% of the parameter value);

– Φi is the original set of parameters.

The noise is thus proportional to the initial value of every
DH parameter (angle or length), with a special consequence
that parameters with an initial value of zero are not perturbed.
All parameters – including the ones with zero values – are then
subject to optimization.

Five different initial configurations were generated and the
optimizer was run using the same data set (300 data points).
The results can be seen in Table 1 and Table 2 (fourth and fifth
column). In the 10% noise case, the reduction of error is sub-
stantial in all the tests that have been run (54% on average -
Table 1). In Experiment 3, with 30% noise on the DH parame-
ters, qualitatively similar conclusions can be drawn: the error
on the task is reduced by 65% on average after optimization.
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Table 2: DH Parameters and optimization. The first column lists all the 48 pa-
rameters that have been optimized during the experimental session
(i.e. 4 parameters for each of the 12 joints under consideration). Sec-
ond column shows their original DH value (extrapolated from the
CAD model), whereas the third, fourth and fifth columns illustrate
their value after Experiment 1, 2 and 3 respectively.

CAD
Exp 1 Exp 2 – 10% noise Exp 2 – 30% noise

(µ) (µ ±σ) (µ ±σ)

a1 0 0 0± 0 0± 0
d1 −0.1373 −0.1373 −0.1343± 0.0097 −0.1477± 0.0206
α1 −1.5708 −1.5968 −1.6292± 0.0787 −1.7148± 0.1119
o1 1.5708 1.5887 1.5770± 0.1134 1.8133± 0.2217
a2 0.0150 0.0126 0.0129± 0.0027 0.0051± 0.0073
d2 0 −0.0026 −0.0020± 0.0028 −0.0074± 0.0083
α2 −1.5708 −1.6014 −1.5165± 0.0703 −1.5658± 0.3268
o2 0 −0.0040 −0.0013± 0.0572 0.0194± 0.1127
a3 −0.0150 −0.0179 −0.0166± 0.0029 −0.0236± 0.0086
d3 −0.1523 −0.1604 −0.1560± 0.0050 −0.1963± 0.0187
α3 1.5708 1.5887 1.5848± 0.0526 1.6144± 0.2614
o3 −1.3090 −1.3360 −1.3508± 0.0511 −1.3663± 0.4323
a4 0 −0.0064 −0.0029± 0.0029 −0.0195± 0.0164
d4 0 −0.0060 −0.0029± 0.0029 −0.0190± 0.0168
α4 −1.5708 −1.5487 −1.5295± 0.0496 −1.4276± 0.3057
o4 1.5708 1.5841 1.5163± 0.1037 1.5072± 0.2475
a5 0 0.0216 −0.0029± 0.0029 −0.0162± 0.0232
d5 −0.1077 −0.1153 −0.1099± 0.0042 −0.1175± 0.0187
α5 1.5708 1.5841 1.5660± 0.1299 1.7101± 0.3909
o5 −1.5708 −1.6014 −1.5712± 0.0439 −1.7181± 0.3643
a6 0 −0.0060 −0.0029± 0.0029 −0.0217± 0.0194
d6 −0.1077 −0.1119 −0.1123± 0.0072 −0.1222± 0.0288
α6 1.5708 1.5839 1.5609± 0.0982 1.5766± 0.1594
o6 −1.5708 −1.6024 −1.6297± 0.0964 −1.6054± 0.2078
a7 0 −0.0069 −0.0041± 0.0052 0.0166± 0.0479
d7 0 −0.0030 −0.0029± 0.0029 −0.0155± 0.0203
α7 −1.5708 −1.5963 −1.5644± 0.0352 −1.5986± 0.2675
o7 −1.5708 −1.5963 −1.5716± 0.0841 −1.6173± 0.3691
a8 −0.0150 −0.0171 −0.0172± 0.0029 −0.0170± 0.0150
d8 −0.1523 −0.1605 −0.1541± 0.0077 −0.1176± 0.0496
α8 −1.5708 −1.5831 −1.5748± 0.1046 −1.6635± 0.2511
o8 −1.8326 −1.8618 −1.8268± 0.1184 −1.8297± 0.2338
a9 0.0150 0.0133 0.0129± 0.0030 0.0012± 0.0296
d9 0 −0.0026 −0.0028± 0.0028 −0.0080± 0.0080

continued on next page
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Table 2: continued from previous page

CAD
Exp 1 Exp 2 – 10% noise Exp 2 – 30% noise

(µ) (µ ±σ) (µ ±σ)

α9 1.5708 1.5891 1.5990± 0.1019 1.5853± 0.2720
o9 0 −0.0040 0.0011± 0.0565 0.0095± 0.0985
a10 0 −0.0019 −0.0025± 0.0037 −0.0050± 0.0144
d10 −0.1373 −0.1411 −0.1410± 0.0093 −0.1279± 0.0395
α10 1.5708 1.5915 1.6521± 0.0582 1.6108± 0.2230
o10 −1.5708 −1.5937 −1.6092± 0.1299 −1.6252± 0.3956
a11 0 0.0008 −0.0028± 0.0028 −0.0045± 0.0148
d11 0 −0.0011 −0.0029± 0.0029 −0.0046± 0.0147
α11 1.5708 1.5918 1.6273± 0.1152 1.5263± 0.2460
o11 1.5708 1.5915 1.6771± 0.0766 1.5118± 0.3519
a12 0.0625 0.0623 0.0579± 0.0038 0.0528± 0.0099
d12 0.0160 0.0151 0.0136± 0.0026 0.0102± 0.0142
α12 0 −0.0012 −0.0102± 0.0838 −0.0244± 0.1054
o12 3.1416 3.1842 3.1370± 0.1743 3.0448± 0.4766



7PA RT I I : D I S C U S S I O N A N D
C O N C L U S I O N S

In the work described in Chapter 5 and Chapter 6, we presented
a new method for robotic self-calibration that does not rely on
any external measurement apparatus or on constraints arising
from specific contact with the environment. Furthermore, no
sensing at a distance (vision, laser) is needed. Instead, taking
inspiration from early infant development and exploiting the
artificial skin on the iCub robot, we exploited the correspon-
dences between the tactile and proprioceptive modality – in
our case tactile inputs and joint angle values – to calibrate
the parameters of a kinematic chain. The data sets were col-
lected using a novel self-touch behavior that is generated au-
tonomously by the robot: the inverse kinematic solver was re-
lying on an advantageous reformulation of the reaching prob-
lem for the two arms of the iCub into a single floating-base
kinematic chain. Then, optimization of the DH parameters was
performed through minimization of the distance between po-
sitions predicted by forward kinematics and known positions
of the taxels on the robotic skin. An improvement over the
CAD values was achieved. Furthermore, configurations with
10% and 30% noise on the initial DH parameters were also sub-
ject to optimization and resulted in an average improvement of
54% and 65% respectively.

As part of our future work we will investigate a variation
on the self-touch scenario where the robot will keep a con-
tact configuration for an extended period of time while vary-
ing the joint configurations. The utility of data sets originating
from this “closed-loop” strategy will be compared with the data
set used in this initial work. Furthermore, several additional
sources of inaccuracy were not considered here. These include
the skin calibration, the kinematics of the hand (from wrist to
fingertip), or the precision of the joint measurements. These
could be subject to optimization in the future as well. At the
same time, while self-touch theoretically provides the means to
come close to perfect accuracy when reaching for one’s own
body, in the future, we want to investigate extrapolation of the
calibration to the whole operational space. Finally, additional
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loops can be closed by adding the visual modality. Using stereo
vision and adding the head and eye kinematics while keeping
the same methodology – that is the point where “double touch”
occurs can be observed – will allow for calibration of all the
remaining components, including camera projective maps. A
theoretical analysis of the observability and identifiability with
respect to the contributions of different data collection methods
and individual sensory modalities will be performed.



Part III

P E R I P E R S O N A L
S PA C E A N D M A R G I N
O F S A F E T Y A R O U N D

T H E B O D Y

Reference paper: Alessandro Roncone, Matej Hoffmann, Ugo
Pattacini, Luciano Fadiga, and Giorgio Metta. Periper-
sonal space and margin of safety around the body: learn-
ing tactile-visual associations in a humanoid robot with
artificial skin. Manuscript, 2015.

Further, this part marginally draws inspiration from the
following publication: Alessandro Roncone, Matej Hoff-
mann, Ugo Pattacini, and Giorgio Metta. Learning periper-
sonal space representation through artificial skin for avoid-
ance and reaching with whole body surface. Submitted to
the 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2015.



8L E A R N I N G TA C T I L E - V I S U A L
A S S O C I AT I O N S O N A
H U M A N O I D R O B O T W I T H
A RT I F I C I A L S K I N

8.1 introduction

In this chapter, we present a solution to the problem of build-
ing a tactile-visual representation on the iCub humanoid robot
through interaction with the self and the external world. In pur-
suance of this, we built a series of receptive fields anchored to
each taxel of the iCub’s skin. Starting from an initially blank
state, we exposed the iCub robot to objects coming onto its
body surface. The objects are tracked and their trajectory recor-
ded1. In particular, the distance and velocity of every object
entering this RF is recorded with respect to the taxel’s FoR,
together with information whether the object has eventually
contacted the particular skin area or not. If the objects eventu-
ally contact the body, respective taxels update their representa-
tion. This gives rise to a set of probabilities that are updated
incrementally and that carry information about the likelihood
of particular events in the environment physically contacting a
particular set of taxels. We explore two modes of this “spatial”
RF. First, the approaching object is the robot’s own body – its
contralateral arm, for example. As described in Chapter 5, the
robot has been made able to execute self-touching behaviors
that allow him to calibrate a tactile-proprioceptive representa-
tion of the space – essentially a self-collision space – around
every taxel. Second, the objects are any oncoming objects in
the environment that are perceived visually and hence tactile-
visual associations are learned.

Coordinate transformations to the FoRs of individual taxels
are indispensable – existing kinematic model and FoR trans-
formation modules available for the iCub robot, together with
current joint encoder values, will be used (cf. Chapter 3). How-
ever, these transformations are subject to numerous errors (in-

1 Considering their general nature (i.e. a recorded trajectory can be either referred
to the robot’s own arm or any external object), we will frequently refer to them as
events.

54
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accuracy of kinematic model, calibration of cameras, skin cal-
ibration, joint backlash etc.) that can amount to an error of a
couple of centimeters. The representation that each taxel will
learn from experience will automatically compensate for these
inaccuracies and ensure more robust responses of the robot.

The properties of this architecture (described in Section 8.2)
are first verified in simulation (Section 8.5.1) and then in the
iCub robot (Section 8.5.2 and Section 8.5.3). Finally, the utility
of this representation for the robot is demonstrated in an avoid-
ance as well as a catching scenario (Chapter 9).

8.2 representation of space around the bo-
dy

We have chosen a distributed representation in which every
taxel is learning a collection of probabilities regarding the like-
lihood of its own body parts or objects from the environment
coming into contact with that particular taxel. Loosely inspired
by neurobiological findings, we decided to consider two key
variables: (i) distance from the taxel D; (ii) time to contact TTC.
The latter is estimated from current distance and velocity of
oncoming objects. Both variables are in the reference frame of
each taxel. This is possible due to the existing skin calibration of
the robot (Del Prete et al. [18]) and a full model of the robot’s
kinematics – including head and eye (Pattacini [63]). For ob-
jects perceived visually, additional processing involving stereo
vision is required. Eventually, every object can be mapped into
the root reference frame of the robot and then transformed to
the reference frames of individual taxels. However, the mod-
els as well as the perceived quantities from the environment
(position and velocity of oncoming objects) are subject to er-
rors, which will be detailed later in Section 8.5. For example,
it can happen that oncoming objects will seemingly penetrate
the robot’s skin – based on our model and measurements, not
in reality – and will thus have negative distance w.r.t. the taxel
normal. Conversely, if the errors bring about an offset in the op-
posite direction, an actual contact on the robot’s skin may corre-
spond to a positive distance perceived in our model. Therefore,
our data will be affected by that and the learning method will
thus have to account for it.
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8.2.1 data collection for learning

As briefly outlined above, two distinct scenarios were consid-
ered where either the robot’s own body parts or external ob-
jects were approaching individual skin parts. However, the ba-
sic principle is the same in both and is realized in a local, dis-
tributed, event-driven manner. An illustration is depicted in
Figure 15; a schematics of the geometry of the setup is pre-
sented in Figure 16.

A volume was chosen to demarcate a theoretical spatial re-
ceptive field around every taxel2. It is cone-shaped and grows
out of every taxel along the normal to the local surface and
extends to maximum 20cm away from the taxel (green region
in Figure 16). This is again loosely inspired by neurobiological
findings. Once an object enters such a volume, we mark the
onset of a potentially interesting event. From this time on, the
position and velocity of the object w.r.t the taxel is recorded so
as the distance D and time to contact TTC are computed.

The distance, D, is calculated as follows:

D = sgn(
−→
d · −→z )||

−→
d || , (9)

where:

–
−→
d is the displacement vector pointing from the taxel to
the event (center of the oncoming object);

– −→z is the z-axis of the reference frame centered on the taxel
and pointing outward (coincident with the normal to the
skin surface at the taxel position).

The sign of their dot product is thus positive if the angle
between them is lower than 180◦, that is if the object is belong-
ing to the positive hemisphere extending from the taxel. Hence,
according to our definition, the distance, D, will preserve the
information about the relationship of the event w.r.t. the taxel
normal. In this way, objects apparently “beneath” the skin sur-
face will acquire negative distances, distinguishing them clearly

2 We will use this notion of receptive field from now on. However, unlike in biology
where receptive fields of individual neurons are tied to a particular sensory modality
and response properties of the neuron, our receptive field is a theoretical construct
– a volume of space around the taxel relying on the robot’s kinematic model. In
what follows, all objects coming toward the robot’s body – note that these can be the
robot’s own body parts whose position is also available in motor or proprioceptive
coordinates or they can be external visually detected objects – will be remapped into
the taxel’s reference frame and thus potentially enter its receptive field.
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(a) Depiction of the receptive field be-
longing to one of the left forearm
taxels.

(b) iCub performing a double touch
behavior. A simplified schematic
of the kinematics and joint an-
gles is superimposed on top of the
robot.

(c) An external object approaching the
right palm during the scenario that
involves learning with external ob-
jects (cf. Section 4.3.3).

Figure 15: Illustration of the experimental setup during different scenarios.
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Figure 16: Receptive field of a taxel and approaching object (event). The taxel
is schematically depicted as a flat 2D area (purple rectangle),
whereas its receptive field is cone-shaped and represented in
green. The red object portrays a generic event (either arm or exter-
nal object); in the moment in which it enters the RF, its distance
−→
d as well as its velocity −→v w.r.t. the taxel’s FoR are recorded with
a 20Hz frequency. These quantities are later used in order to com-
pute the variables our visuo-tactile representation is built upon
(i.e. D and TTC, see text for details).

from their counterparts in the positive hemisphere (green area
in Figure 16). Then, the time to contact, TTC, is defined as fol-
lows:

TTC = −sgn(
−→
d · −→v ) ||

−→
d ||

||
−→
vd||

= −sgn(
−→
d · −→v ) ||

−→
d ||

||
−→
v · cos(α)||

, (10)

where:

–
−→
d is again the displacement vector pointing from the taxel
to the event;

– −→v is the object’s velocity vector;

– −→vd is the projection of the object’s velocity −→v onto the dis-
placement

−→
d , given by the product of −→v and cos(α);
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– α is the angle between
−→
d and −→v , as depicted in Figure 16.

Similarly to the formula for distance above, the sgn term
stands for the direction of motion of the approaching object.
That is, for objects coming from the “positive hemisphere” to-
ward the taxel, the dot product will be negative ( and will have
opposite directions) and the final time to contact will be pos-
itive. The opposite will hold for objects going away from the
taxel or the special case where they have already “penetrated”
the skin according to the estimation. Finally, the second term
accounts for the magnitude of the TTC, that is simply time as
distance over speed (norms of the respective vectors,

−→
d and

−→
vd).

Please note that this procedure – logging of D and TTC of
approaching objects – proceeds in parallel for every taxel whose
receptive field has been penetrated. This data is buffered for 3
seconds and it is used for learning only if the object eventually
contacts the skin and is perceived by at least one taxel. In this
case, a learning iteration is triggered that proceeds as follows:

– For all the taxels that experienced contact, the buffer of
object positions in their local FoR is traversed back in time
with time steps of 50 ms. While the object is still in their
respective receptive fields, the distance and time to contact
at every time step are recorded as positive examples in
every taxel’s “memory”.

– For all the other taxels on the same body part, the proce-
dure is analogous, but negative examples are appended to
their respective memories.

Thus, objects that pass close to but never touch the body
never enter the representations. This decision has been made
by design on our side in order to reduce the necessary com-
putation and memory. However, taking into account all events
that come sufficiently close to the body would be an equally
valid approach.

8.2.2 internal representation

Every taxel stores and continuously updates a record of the
count of positive and negative examples it has encountered for
every combination of distance and time to contact. We defined
the range of D as [−10, 20]cm and TTC as [0, 3]s. The variables
were discretized into 8 equally sized bins for the distance and 4
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bins for the time to contact respectively; the asymmetry comes
from the fact that the TTC required a velocity estimation of the
approaching object and gave rise to more noisy estimates. There
were 32 combinations and hence 32 items, [npositive,nnegative],
in every taxel’s memory. The main advantage of this represen-
tation is its simplicity and ease of incremental updating – with
new positive or negative examples, the respective count in the
memory is simply incremented.

However, most relevant for the agent is an estimation of the
probability of an object hitting a particular part of the skin,
which can be used to trigger avoidance responses, for example.
For every oncoming object, its “coordinates” w.r.t. every taxel
(i.e. distance, time to contact) can be discretized in the manner
described above and a frequentist probability estimate obtained
simply as:

P(D, TTC) ≈ f(D, TTC) =
npositive(D, TTC)

npositive(D, TTC) +nnegative(D, TTC)
(11)

Such an approach – discretized representation and querying –
would constitute the simplest solution. Nonetheless, it may give
rise to unstable performance, in particular in the case when the
state space is undersampled. Therefore, it is desirable to ob-
tain a continuous function f which can be sampled at any real
values of [D, TTC] and is capable of smoothing out the global
discretized landscape3 . This can be achieved by adapting the
Parzen-Window density estimation algorithm [61] to our situ-
ation – by employing it as a data interpolation technique. In
a 1-dimensional case, the interpolated value p(x) for any x is
given by:

p(x) =
1

n

n∑
i=1

1

h2
Φ

(
xi − x

h

)
, (12)

where:

– xi are the data points in the discrete input space

3 It is worth noting that only the original discretized [D, TTC] combinations have esti-
mates of a probability function associated with them, each pair [Di, TTCj] indepen-
dently from others. However, the whole “landscape” arising from f(D, TTC) cannot
be interpreted as a probability mass function (in discrete case) or probability density
function (in continuous case), because the overall probability for the whole space of
D and TTC combinations can take any values and does not sum up to 1 .
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– Φ is the window function or kernel

– h is the bandwidth parameter, which is responsible for
weighting the contributions of the neighbors of the point
x.

We used a Gaussian function, hence we have:

p(x) =
1

n

n∑
i=1

1√
2πσ

exp
(
−
(xi − x)

2

2σ2

)
. (13)

In our case, which is 2-dimensional (with x = [D, TTC] as
the input variables), we specified the standard deviation vector
σ equal to the width of the single bin in each dimension of
the input space. Hence, for any value of D = d and TTC =
ttc, the final interpolated value – i.e. p(d, ttc) – represents the
probability of an object at distance d and time to contact ttc
hitting the specific taxel under consideration.

8.3 monte carlo simulation of a single ta-
xel model

In order to investigate the behavior of the representation pro-
posed in Section 8.2, a Monte Carlo simulation was designed
and carried out. In particular, we wanted to study the prop-
erties of the acquired representation in an ideal world – with
sufficient samples available and with control over noise – and
investigate the effect of different parameters (such as number of
bins for discretization, parameters defining the cone, range of
object speeds, etc.). To this end, a 3-dimensional model of a sin-
gle taxel and its surroundings with oncoming simulated objects
was set up – see Figure 17 for a schematics of a 2D projection
of the setup.

The model parameters were chosen to mimic the real robot
setup as close as possible. The simulated taxel itself has a ra-
dius of 0.235 cm, which mimics the radius of the real iCub
taxels. However, objects landing within 2 cm from the taxel’s
center (violet areas in Figure 17b) are still considered positive,
resembling the size of a triangular module that is composed
of 10 taxels – the basic building block of the iCub skin (see
Figure 18a for a comparison with the real iCub’s skin). These
“virtual taxels” will be used also in the real setup. The taxel’s
cone-shaped receptive field is depicted in green. In addition,
the oncoming objects were also simulated. Since the nature of
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(a) Side view of the simulated taxel with oncoming objects.

(b) Top view of the simulated taxel.

Figure 17: Schematics of single taxel model. Figure 17a) Side view of the simu-
lated taxel with oncoming objects. The violet line at the bottom
represents a virtual taxel; green sector is a projection of the taxel’s
cone-shaped receptive field. The light blue region marks the area
from which objects are shot toward the taxel. Examples of a pos-
itive (blue line) and a negative (red line) event are depicted. Fig-
ure 17b) Top view of the taxel. A single taxel is the light blue
circle in the middle. The violet circle marks the area of a virtual,
bigger taxel in simulation. See text for details.
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our data collection and learning method requires positive exam-
ples (objects contacting the virtual taxel) as well as negative ex-
amples (objects contacting neighbouring taxels), we simulated
additionally 3 neighbouring virtual taxels (Figure 17b). We im-
plemented a stochastic “shower” of objects with their starting
points uniformly distributed in the blue region (“starting zone”
in Figure 17a) and their landing points following a Gaussian
distribution centered on the simulated taxel (µ = 0; σ = 5 cm).
The velocity of the object is a vector directed from the start-
ing point to the landing point, whose speed is uniformly dis-
tributed between 5 cm/s and 15 cm/s (but constant over the
time). With the object’s trajectory thus defined, its position and
velocity is then sampled at 50 ms, similarly to what happens in
the real setup. In a second step, in order to simulate noise in
the acquisition, additional Gaussian noise is added to the mea-
surement of its position as well as velocity. The Monte Carlo
simulation was implemented in the Matlab environment.

8.4 icub humanoid robot and key modules

The iCub platform used in this work has been described in
Chapter 3. Nonetheless, for the purposes of this work, further
details are needed. Specifically, Section 8.4.1 will provide more
information about how the artificial skin of the iCub has been
exploited for the purposes of this work.

8.4.1 artificial skin

The artificial skin the iCub was recently equipped with has
been detailed in Section 3.1.3. With the exception of the palm,
the skin covering all body parts consists of patches with trian-
gular modules of 10 taxels each (Fig. 18a). There are in total 23
modules on the forearm in two patches and hence 230 taxels.
Without loss of generality, for the purposes of this study – spa-
tial receptive fields around body parts – it would be an unnec-
essarily high resolution to consider every taxel independently.
Therefore, in what follows, every triangular module acts as sin-
gle virtual taxel. That is, the taxel in the center of the module
acts as a representative of the whole module and an activation
of any of the module’s taxels is represented as a signal coming
from this virtual (representative) taxel.

The palm features a different design (see Fig. 18b), composed
of an array of 43 taxels. In order to mimic a similar resolution
to the other body parts, we have artificially split the palm’s
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(a) Four triangular modules with 10 taxels each.

(b) Exposed skin of the palm with virtual taxels highlighted.

Figure 18: Pressure-sensitive skin of the iCub.
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skin into 4 regions of 8 to 10 taxels, forming “virtual taxels”
of the palm. These are depicted in Figure 18b, with the center
taxels marked with full circles. The region enclosed between
the thumb and the fingers is not considered, since it is very
hard to be touched by oncoming objects.

A spatial calibration of the skin of the forearm has been per-
formed in Del Prete et al. [18]. Using data from the CAD model,
we have added calibration of the palm. Therefore, the poses of
all taxels (position and orientation) as well as the virtual taxels
in local reference frames of the robot are known.

8.4.2 kinematic model and coordinate transfor-
mations

Each of the sensory modalities described above senses differ-
ent physical quantities and also operates in different FoRs. Es-
tablishing a common ground between these rich but diverse
sources of information is an important capacity that is attributed
to the body and peripersonal space representations. As we de-
scribed in Section 8.2, coordinate transformations (such as be-
tween eye-centered and body-part-centered FoRs) are one nec-
essary component and different mechanisms how they can be
supported by the brain were put forth. In our case, we specifi-
cally need two types of transformations:

– Purely kinematic transformations. For the first scenario where
the robot learns about the space around its body in the
absence of visual information (cf. Section 4.3.1), the taxel
positions need to be brought to a common FoR with the
body parts touching them (like skin on the forearm being
touched by the tip of the contralateral index finger – Fig-
ure 15b). We chose the FoR of the individual taxels to act
as the common FoR here.

– Visual-kinematic transformations. In the subsequent scenar-
ios (i.e. Section 4.3.2, Section 4.3.3, and Section 4.3.4), vi-
sual information was added. There were two variants of
the experiment: first, the double touch scenario with vi-
sual tracking of the finger approaching the contralateral
arm. Second, external objects were approaching and con-
tacting the robot’s skin. In both cases, transformations in-
volving the image (retina) frames are necessary. We chose
to exploit binocular disparity in order to obtain a 3D po-
sition of the object in the head FoR and then following
a coordinate transformation sequence to eventually reach
the FoR of individual taxels.
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Learning these transformations was not the goal of this work;
therefore, we have employed the existing kinematic model of
the iCub that is based on the Denavit-Hartenberg convention
and embedded in the iKin software library (cf. Figure 4). Us-
ing this and setting current joint positions as obtained from
the encoders, any kinematic chain of the robot (such as from
tip of finger to wrist of contralateral arm of from eye/head to
the wrist) can be traversed in either direction by employing an
appropriate sequence of roto-translation matrix multiplications.
In fact, kinematic representations of individual chains in iKin
start/end in the root FoR of the robot (around waist) and this is
employed as an intermediary to connect individual subchains.
Finally, the last transformation to individual taxels comes from
the skin calibration (cf. Section 3.1.3).

However, these composite transformations are subject to nu-
merous errors that include (i) mismatch between the robot model
based on the mechanical design specifications (CAD model)
and the actual physical robot; (ii) inaccuracies in joint sensor cal-
ibration and measurements; (iii) unobserved variables from the
sensed configuration coming from joint backlash or mechanical
elasticity; (iv) inaccuracies in taxel pose calibration; (v) addi-
tional errors in visual perception coming from inaccurate cam-
era calibration etc. As a whole, these errors can amount to a to-
tal of several cm. However, in the approach adopted here, they
will be automatically compensated for by the representations
that every taxel will learn regarding its surrounding space.

8.4.3 visual processing and gaze control

For the scenario involving external objects approaching the ro-
bot’s body, additional processing steps are needed to obtain
their position and velocity: moving objects need to be detected,
segmented out of the background and their position tracked.
We prepared two modifications of the same experiment:

1. Tracking of fingertip with colored marker. In the first scenario,
we implemented a color segmentation module able to track
a green marker placed on the iCub’s index fingertip and
to project its position into the Root FoR.

2. Tracking of arbitrary objects. In this case, we developed a
pipeline that allowed us to track general objects under
some assumptions on the availability of visual features
and limits on their velocity and size.

In both cases, a gaze controller was employed in order for the
eyes and head to smoothly follow the tracked object in space.
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The details of the gaze controller can be found in [63], whereas
Section 8.4.3.1 and Section 8.4.3.2 will describe the implementa-
tion of the trackers we developed.

8.4.3.1 Tracking of fingertip with colored marker

The fingertip tracking task was achieved by means of a color
segmentation algorithm. We used a hue thresholding in the
HSV (Hue, Saturation, Value) color space in order to detect the
green marker placed on the robot’s fingertip (40 < H < 80). A
depiction of this algorithm can be seen in Figure 19.

(a) Index fingertip of the right iCub’s
hand performing a double touch as
seen from the robot’s point of view.
It is covered by a green marker.

(b) Filtered image with the HSV segmen-
tation algorithm. The tracked finger-
tip is depicted in dark blue, whereas
the brown dot is placed at the center
of the fingertip.

Figure 19: Tracking of fingertip with colored marker. The center of the fingertip
is retrieved for both the right and left image, and a triangulation
algorithm converts this information into a 3D point. See text for
details.

The segmentation algorithm was applied to the right and
left image, in order to compute the center of the fingertip in
both the image planes (cf. Figure 19b). Thanks to the kinematic
model of the iCub, a triangulation was then applied to this
binocular information in order to estimate the 3D coordinates
of the fingertip in the robot’s Root FoR.

8.4.3.2 Tracking of arbitrary objects

The scenarios involving the tracking of arbitrary objects needed
the implementation of a more sophisticated software module,
able to feature a reliable 3D tracking of any moving object in
the robot’s workspace.

The software architecture is composed of several intercon-
nected modules, some of which were already available in the
iCub software repository, and are described in Section 3.2.3.
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Figure 20: Tracking of arbitrary objects schematics. See text for details.

The framework is schematically depicted in Figure 20, whereas
the outcome of each step is presented in Figure 21.

The first module computes a 2D Optical Flow (Ciliberto et al.
[9]) to detect motion in the image plane. If the computed mo-
tion is consistent with the presence of an object coming in the
nearby space of the robot4, it triggers a pipeline composed by
three interconnected modules:

– a 2D particle filter (Tikhanoff et al. [83]) able to track the
object in the image plane based on its color properties;

– a 3D stereo disparity module (Fanello et al. [23]), able to
convert the 2D planar information related to the incoming
event (namely, the centroid of the object and an estimation
of its size) into 3D coordinates;

– a Kalman filter that receives 3D coordinates from the stereo
vision module and improves the robustness of the estima-
tion. It employs a fourth order dynamic model of the ob-
ject motion.

The result coming out from the Kalman filter is an estimation
of both the 3D position and the 3D velocity of the incoming
object with respect to the robot’s Root FoR.

8.5 results

Results from four different experimental scenarios are reported.
First, the behavior of the proposed representation is studied in
a single taxel model (cf. Section 8.5.1). Second, we demonstrate
how the robot can learn about the extent of its body and po-
tential self-collisions in the absence of vision: through tactile-
motor associations in a double touch scenario (cf. Section 8.5.2).
Third, the motor information about the oncoming body part is

4 To this regard, a check on the stability of the detected motion has been implemented,
in order to possibly avoid any outlier.
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(a) Object detected by the 2D Optical
Flow.

(b) Object tracked by the 2D particle fil-
ter tracker.

(c) Object as seen from the 3D stereo vi-
sion module.

(d) Depiction of the tracked object into
the 3D world of the iCubGui.

Figure 21: Tracking of arbitrary objects pipeline. Each figure shows one of the
four modules involved in the 3D optical flow pipeline. See text
for details.

substituted by visual information and hence, first tactile-visual
associations can be learned (cf. Section 8.5.3.1). Fourth, this sce-
nario is extended by tracking arbitrary objects rather than the
robot’s own body parts in the visual field as they near its skin
(cf. Section 8.5.3.2).

8.5.1 learning in a single taxel model

The properties of the learning procedure as well as the pro-
posed representation (Section 8.2) were investigated in a single
taxel model (Section 8.3). Two independent Monte Carlo simu-
lations have been performed; the results from 500 iterations –
500 objects being fired toward the taxel – are depicted in Fig-
ure 22 and Figure 23. They both show the representation af-
ter learning and smoothing using the adapted Parzen Window
method: the full landscape on the top and its projection into
2D with color coding the third dimension (the probability of
contact) on the bottom.
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The first stage (cf. Figure 22) was performed with a theoret-
ically perfect model of the robotic setup: the measurement of
position and velocity of the incoming event was without noise,
and the simulated kinematic error was 0. A clear “ridge” can
be seen in both plots which corresponds to the trajectories of
objects as they approach the taxel and both D and TTC are de-
creasing. The contact with the taxel occurs at both D and TTC
equal to 0.

In the second step, in order to come closer to the situation in
the real robot, two additional features were added to the model.
First, Gaussian noise was added to the measurement of position
and velocity (and henceD and TTC). Second, we had to account
for the fact that the object position and velocity measurements
in the real robot are subject not only to random, but also to
systematic errors. In particular, in both tactile-motor (double
touch) and tactile-visual scenarios, the coordinate transforma-
tions needed to map the approaching object to the FoR of indi-
vidual taxels rely on the model of the robot kinematic structure
and its visual apparatus (see Section 8.4.2). These errors can
sum up to a couple of centimeters. For example, imagine an ob-
ject is just contacting a particular taxel – that is its real distance
from it is 0. However, the position of the object as perceived
through the robot’s eyes and then projected into the taxel’s FoR
may give a result of 5 cm or even −5 cm. To clearly demonstrate
the effect of this on the representation, we have introduced such
a systematic offset into the model. The results for this configu-
ration – noise and systematic error – can be seen in Figure 23, in
which we used an error of −10 cm. The Gaussian noise results
in an overall less sharp profile of the activation landscape. The
offset can be clearly seen in the distance axis, with the “ridge”
of high activations cutting the x−axis in the negative domain.
Furthermore, when compared with the previous experiment, it
is clear how much the effect of the noise is shaping the rep-
resentation: instead of having a well defined function (such as
the one in Figure 22), the representation is here more spread in
the whole domain of [D, TTC]. This is because, in such a noisy
and uncertain environment, the simulated taxel is not able to
discern which event will eventually contact the taxel: its output
is approximatively 0.5 (i.e. 50%) for most of the domain as a
result of this uncertainty.
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(a) 3D Parzen Window smoothing.

(b) 2D projection of the Parzen estimation.

Figure 22: Representation learned in single taxel model. D is the distance of ob-
ject from taxel; TTC is the time to contact estimated from distance
and velocity of the object. Figure 22a) Full 3D graph of the repre-
sentation. The z−axis is given by the activation – estimate of the
probability of object eventually landing on the taxel. Figure 22b)
2D projection; third dimension preserved in color map.
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(a) 3D Parzen Window smoothing.

(b) 2D projection of the Parzen estimation.

Figure 23: Representation learned in single taxel model with noise and systematic
error (−10 cm offset). The noise makes the representation more
spread throughout the input domain; further, the response is
shifted toward the negative domain, as an effect of the systematic
error. Figure 23a) 3D Parzen Window smoothing after learning of
the visuo-tactile representation. Figure 23b) 2D projection; third
dimension preserved in color map.
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8.5.2 tactile-motor learning : double touch

In this experiment, we reused the scenario developed in Part II:
double touch. The robot is stimulated on the skin of a body
part (specifically, the forearm); then a modified inverse kinemat-
ics solver and controller is used to command the contralateral
fingertip to reach to the stimulated taxel (note that the taxel
eventually touched by the robot may differ from the one that
was stimulated initially); see Figure 15b for a schematic illustra-
tion. After a successful double-touch event (i.e. two skin parts
activated with sufficient spatial and temporal congruency), a
buffer is used for data collection and learning as explained in
Section 8.2.1. That is, the kinematic model and the values of the
joint angles at every time step are used to convert the position
of the tip of the index finger (the active, touching body part)
to the FoRs of the taxels on the passive, touched part. Unfortu-
nately, it is not feasible to touch the whole sensorized surface
of the forearm since some configurations are kinematically not
possible or unsafe; therefore, we selected 8 virtual taxels on
the inner part of the forearm for which the double touch was
triggered and these 8 taxels were learning in parallel from the
distance and expected time to contact as the contralateral finger
was approaching.

There were 107 successful double touch trials performed. That
is, there were 107 trajectories sampled at 20 Hz that resulted in
contact with the selected area of the skin – the actual number
of data points was much larger. All the taxels whose receptive
fields were penetrated were learning in parallel. From the 8 tax-
els subject to learning, only 6 were actually touched at least
once by the contralateral index finger. In all of these, the results
after learning were qualitatively similar and matched the pre-
dictions of our model. The results for one of the taxels with
most training samples (taxel nr. 2; 1625 samples) are shown
in Figure 24 and demonstrate how the robot could learn what
one could call a tactile-motor margin of safety: a way to pre-
dict self-collisions in the absence of visual input. No offset in
the position as well as little noise is reflected in the learned
representation, indicating that the model of the kinematic loop
connecting the two arms was reasonably accurate in this case.

8.5.3 tactile-visual learning

In this section, two types of experiment were performed. First,
the double touch scenario was repeated, but this time, visual



8.5 results 74

(a) 3D Parzen Window smoothing.

(b) 2D projection of the Parzen estimation.

Figure 24: Tactile-motor representation learned in the double touch scenario. Re-
sults for taxel nr. 2 on the inner part of the left forearm. See text
for details.
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rather than “motor” coordinates of the active arm were consid-
ered. Second, external objects were nearing the robot’s body. In
both cases, the own body part / external objects were detected,
tracked and their trajectory prior to contact was recorded and
later used for learning of the representation of nearby space
in corresponding taxels. Note that to know the passive arm as
well as the head and neck configuration, proprioceptive signals
were also considered in order to compute the necessary FoR
transformations with the help of the kinematic model.

8.5.3.1 Tactile-visual learning from double touch

For this variant of the scenario – double touch but with the
touching arm perceived visually – we added a small colored
marker to the fingertip that was commanded to execute the
double touch configurations. The method to extract the finger’s
coordinates is described in Section 8.4.3.1. Then, the learning
procedure was exactly the same as in the previous double-touch
scenario. We performed 45 trials. The results show a similar
pattern to the previous scenario – the same taxel (nr. 2; 376
samples) on the inner forearm is picked for demonstration in
Figure 25.

8.5.3.2 Tactile-visual learning using external objects

After the tactile-visual association have been learned using own
body in the double touch scenario, the representation acquired
can be generalized and applied to external (i.e. not self-genera-
ted) stimuli as well – objects coming onto the skin. The visual
processing pipeline from previous experiment was adapted and
replaced by a more general one that uses motion detection
based on optic flow, visual template tracking, stereo vision, and
a minimum-jerk model for the movement of objects – as ex-
plained in Section 8.4.3.2. This setup was validated using two
objects – a cube and a small football (see Figure 26) – approach-
ing the virtual taxels on the robot’s body. Importantly, we were
not limited to parts of the skin that can be activated in self-
touch configurations anymore. Therefore, to demonstrate the
generality of our approach, we have extended the learning to
the outer part of the left forearm as well as the palm of the right
hand.

On the inner part of the left forearm, the same 8 taxels as in
the previous scenarios were subject to learning. Additionally, 4
taxels on the outer part of the forearm were added. Finally, 4
virtual taxels of the right palm (see Figure 18b) were also sub-
ject to learning. We conducted a total of 53 trials for the inner
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(a) 3D Parzen Window smoothing.

(b) 2D projection of the Parzen estimation.

Figure 25: Tactile-visual representation learned in double touch scenario. Results
for taxel nr. 2 on the inner part of the left forearm. See text for
details.
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(a) (b)

Figure 26: Unmodeled objects approaching the right palm. (left) Cube. (right)
Small football.

part of the left forearm (events from both objects together), 34
trials for the outer part of the forearm, and 77 trials for the right
hand. The results are shown in Figure 27 for the inner part of
the left forearm (627 samples, taxel nr. 2). The outer part of the
forearm (451 samples; taxel nr. 8), and the right hand (944 sam-
ples; virtual taxel nr. 2; taxel marked in red in Figure 2 right)
are instead depicted in Figure 28 and Figure 29 respectively.

The representation learned for the inner part of the left fore-
arm is in accordance with previous results for the same skin
part. Interestingly, the other skin parts reveal a small systematic
error in the models that the learned representation was relying
on. Concretely, for the outer part of the forearm (cf. Figure 28),
the ridge of maximum activation seems to cross the distance
axis at a negative offset of around 3 cm; conversely, in the case
of the right palm, the plot is suggestive of a positive offset of
a similar magnitude. Importantly, the learned representation
automatically compensates for this error, which will be demon-
strated in Chapter 9. Collectively, the representations learned
by means of the interaction with external objects present an-
other significant similarity, that is the effect of a bigger noise
w.r.t. the representation learned at previous stages. This comes
as a consequence of two motivations: (i) the experimental se-
tups our representation was learning from are fundamentally
different; the learning with external objects scenario involved
the presence of an external human experimenter, whereas the
double touch scenario (either with or without vision) was a
more controlled setup; (ii) the amount of noise and errors com-
ing from the visual system is intrinsically higher.
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(a) 3D Parzen Window smoothing.

(b) 2D projection of the Parzen estimation.

Figure 27: Tactile-visual representation learned from oncoming objects. Results for
taxel nr. 2 on the inner part of the left forearm. See text for details.
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(a) 3D Parzen Window smoothing.

(b) 2D projection of the Parzen estimation.

Figure 28: Tactile-visual representation learned from oncoming objects. Results for
taxel nr. 8 on the outer part of the left forearm. See text for details.



8.5 results 80

(a) 3D Parzen Window smoothing.

(b) 2D projection of the Parzen estimation.

Figure 29: Tactile-visual representation learned from oncoming objects. Results for
taxel nr. 2 on the right hand. See text for details.



9A P P L I C AT I O N S O F T H E
M A R G I N O F S A F E T Y
I M P L E M E N TAT I O N :
AV O I D A N C E A N D C AT C H I N G
B E H AV I O R S

9.1 introduction

Chapter 8 dealt with the construction of a tactile-visual inte-
grated representations of the nearby space and, consequently,
a margin of safety around the robot’s body. To our knowledge,
this is the first implementation of a visuo-tactile-proprioceptive
association in a real robot, which effectively creates a margin of
safety around all the body parts of the robot that were subject
to the training procedure.

In the following, this distributed, decentralized information
is put under testing by means of an experimental scenario that
will feature an equally distributed motor controller. As illus-
trated in Section 4.3, the utility of the proposed architecture
has been tested in an avoidance and catching scenario that
capitalizes on the tactile-visual representations acquired previ-
ously. The robot was able to exploit the model in order to either
avoid or catch an incoming object with any of the skin parts
that have been trained. In this context, the distributed infor-
mation stored in every taxel’s representation led to a similarly
distributed response in the interaction with the environment.
The experiments were conducted by presenting the robot with
a series of objects detected through the optical flow tracker (cf.
Section 8.4.3), similarly to the learning stage presented in Sec-
tion 8.5.3.2. Any oncoming object thus triggered an activation
in each taxel given by the taxel’s previous experience with such
objects events (in terms of [D, TCC]). Consequently, this gave
rise to a distribution of activations throughout the skin.

81
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9.2 avoidance and catching controller

In order to achieve the desired behavior, we implemented a ve-
locity controller able to move any point of either the left or the
right kinematic chain in a desired direction. During an avoid-
ance task, the motion should be directed away from the point
of maximum activation, along the normal to the local surface
in that point. For the catching behavior, the desired movement
vector is the same, only in opposite direction. For this reason,
we computed a weighted average for both the position of the
avoidance/catching behavior and its direction of motion:

P(t) =
1

k

k∑
i=1

[ai(t) ·pi(t)]

N(t) =
1

k

k∑
i=1

[ai(t) ·ni(t)]

(14)

where:

– P(t) and N(t) are the desired position and direction of
motion in the robot’s root reference frame respectively;

– pi(t) and pi(t) are the individual taxels’ positions and nor-
mals;

– ai(t) are the activations weights of the corresponding tax-
els.

The weighted average is computed by cycling through all the
taxels whose activation is bigger than a predefined threshold
at any given time. Therefore, the resultant position and the
direction of motion of the avoidance/catching behavior were
proportional to the activation of the taxels’ representations and
changed dynamically as the activation levels of different tax-
els varied. The velocity control loop employed a cartesian con-
troller [63] whose reference speed was fixed to 10cm/s.

9.3 exploitation of the learned associati-
ons

Using the representations developed at previous stages and the
controller described in Section 9.2, we validated our setup with
two distinct experimental sessions. The iCub was presented
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with an unknown object that has not been used at the learn-
ing stage (a pink octopus, Figure 30). It was used by the exper-
imenter to perform a series of approaching behaviors toward
the robot’s body parts that had previously learned their mod-
els (left forearm and right hand). Also, the visual processing
pipeline used was identical. However, here, the taxels’ activa-
tions – given by the previously learned representations – were
exploited by the robot to either avoid or catch the incoming
object with any of the body parts used during the learning.
As specified in Section 9.2, only taxels with activation above a
certain threshold contributed to the resultant movement vector
that was executed by the controller. This threshold was empiri-
cally set to 0.4, corresponding to a 40% chance of that taxel be-
ing contacted by the oncoming object (according to the model
it learned).

9.3.1 margin of safety : avoidance behavior demon-
stration

To demonstrate the performance of the avoidance behavior, we
conducted an experimental session of roughly 20 min. duration
in which the experimenter performed a series of approaching
movements, alternating between the body parts and varying
the approaching direction. Here we restrict ourselves to a qual-
itative assessment only. In short, the avoidance behavior was
successfully triggered in all cases. A snapshot illustrating typ-
ical behavior in a 15 s window for the left forearm (Figure 31

left) and a 20 s window for the right palm (Figure 31 right) is
shown – with two approaching events each plot. In total, 9 tax-
els of the left forearm (6 on the inner part; 3 on the outer part)
and 3 taxels of the right palm were considered: from the 12
(left forearm) and 4 (right hand) taxels that have been trained
in Section 8.5, two were left out because they did not experi-
ence a sufficient amount of training samples in order to show a
significant response. The top plots of Figure 31 depict the dis-
tance of the approaching object from the individual taxels (in
their respective FoR). The bottom plots show the activations of
the learned representations for each taxel 1. As the object comes
closer, there is an onset of activation in the representations of
the “most threatened” taxels (bottom plots). Once the activation
level exceeds a predefined threshold (0.4 in this case – horizon-
tal line in bottom plots), the avoidance behavior is triggered.

1 Note that this representation uses a two-dimensional domain ofD, TTC. However, to
demonstrate the behavioral performance, we restrict ourselves to showing distance
only in the upper plot.
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Figure 30: Unknown object used during the avoidance/catching scenario. The ex-
perimenter is approaching the outer part of the left forearm with
a pink octopus, that was not experienced by the robot during the
learning stage. The screen in the background shows the pipeline
– motionCUT, particle filter tracker, stereo vision, kalman filter –
that has been set up in order to track arbitrary objects (cf. Fig-
ure 21). See text for details.
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This is illustrated in the top plots with the shaded violet area
that marks the velocity of the respective body part (left forearm
in the top left plot, right hand in the top right plot). To facilitate
understanding, the first taxel responding has been highlighted
in the corresponding upper and lower plots. The upper plots
clearly demonstrate that the avoidance behavior was effective –
a safety margin was always preserved.

9.3.2 “catching” with arbitrary body parts

In a similar fashion, we probed the “catching” controller in
a roughly 10-min. session. A snapshot illustrating the perfor-
mance while approaching the inner part of left forearm is shown
in Figure 32. The graphical illustration is the same as in the
avoidance case. The spatial representations pertaining to the
taxels get activated (bottom plot) and trigger the movement (vi-
olet shaded area in top plot), which is approaching the object
this time. In addition, the bottom plot illustrates also the phys-
ical skin activation (green shaded area). Importantly, contact is
generated in both cases – as the skin activation testifies. The
fact that the distance is greater than zero in the first event of
the object approaching can be attributed to the systematic error
(either incorrect visual perception of the object or offsets in the
kinematic transformations). In spite of this, as demonstrated in
Section 8.2, the proposed model was able to successfully com-
pensate for this error and achieve the task.



9.3 exploitation of the learned associations 86

0

0
.1

0
.2

0
.3

0
.4

Distance [m]

0

0
.1

0
.2

0
.3

0
.4

Distance [m]

6
0

6
2

.4
6

5
7

0
.4

7
5

0

0
.4

0
.51

T
im

e
 [

s
]

Activation

 

 

F
A

L
i1

F
A

L
i2

F
A

L
i3

F
A

L
i4

F
A

L
i5

F
A

L
i6

F
A

L
o
1

F
A

L
o
2

F
A

L
o
3

1
5

.4
2

0
2

5
2

8
.6

3
0

0

0
.4

0
.51

T
im

e
 [

s
]

Activation

 

 

P
R

1

P
R

2

P
R

3

Fi
gu

re
3

1
:A

vo
id

an
ce

de
m

on
st

ra
tio

n.
(L

ef
t)

O
bj

ec
t

co
m

in
g

on
to

le
ft

fo
re

ar
m

.9
ta

xe
ls

of
th

e
le

ft
fo

re
ar

m
(6

on
th

e
in

ne
r

pa
rt

;3
on

th
e

ou
te

r
pa

rt
)

w
er

e
co

ns
id

er
ed

in
th

e
ex

pe
ri

m
en

t.
To

p
pl

ot
sh

ow
s

th
e

di
st

an
ce

of
th

e
ob

je
ct

fr
om

th
e

ta
xe

ls
in

th
ei

r
in

di
vi

du
al

Fo
R

s.
Th

e
sh

ad
ed

vi
ol

et
ar

ea
m

ar
ks

th
e

ve
lo

ci
ty

of
th

e
bo

dy
pa

rt
(c

om
m

on
to

al
lt

ax
el

s;
m

ax
im

um
ac

ti
va

ti
on

co
rr

es
po

nd
in

g
to
1
0

cm
/s

).
Bo

tt
om

pl
ot

de
pi

ct
s

th
e

ac
ti

va
ti

on
s

of
th

e
fo

re
ar

m
ta

xe
ls

’s
pa

ti
al

re
pr

es
en

ta
ti

on
s.

(R
ig

ht
)

O
bj

ec
t

co
m

in
g

on
to

th
e

ri
gh

t
pa

lm
.T

he
re

w
er

e
3

ta
xe

ls
co

ns
id

er
ed

.I
nt

er
pr

et
at

io
n

of
th

e
pl

ot
s

is
co

ng
ru

en
t

w
it

h
w

ha
t

pr
es

en
te

d
fo

r
th

e
le

ft
fo

re
ar

m
.



9.3 exploitation of the learned associations 87

0

0
.1

0
.2

0
.3

0
.4

0
.5

Distance [m]

9
0

9
5

1
0

0
1

0
5

1
1

0
1

1
5

1
2

0
1

2
5

0

0
.4

0
.51

T
im

e
 [

s
]

Activation

 

 

F
A

L
i1

F
A

L
i2

F
A

L
i3

F
A

L
i4

F
A

L
i5

F
A

L
i6

F
A

L
o
1

F
A

L
o
2

F
A

L
o
3

Fi
gu

re
3

2
:“

C
at

ch
in

g”
w

ith
ar

bi
tr

ar
y

bo
dy

pa
rt

de
m

on
st

ra
tio

n.
O

bj
ec

t
co

m
in

g
on

to
le

ft
fo

re
ar

m
.
9

ta
xe

ls
of

th
e

le
ft

fo
re

ar
m

(6
on

th
e

in
ne

r
pa

rt
;
3

on
th

e
ou

te
r

pa
rt

)
w

er
e

co
ns

id
er

ed
in

th
e

ex
pe

ri
m

en
t.

To
p

pl
ot

sh
ow

s
th

e
di

st
an

ce
of

th
e

ob
je

ct
fr

om
th

e
ta

xe
ls

in
th

ei
r

in
di

vi
du

al
Fo

R
s.

Th
e

sh
ad

ed
vi

ol
et

ar
ea

m
ar

ks
th

e
ve

lo
ci

ty
of

th
e

bo
dy

pa
rt

.B
ot

to
m

pl
ot

de
pi

ct
s

th
e

ac
ti

va
ti

on
s

of
th

e
fo

re
ar

m
ta

xe
ls

.T
he

gr
ee

n
sh

ad
ed

ar
ea

m
ar

ks
ph

ys
ic

al
co

nt
ac

t
w

it
h

th
e

ro
bo

t’s
sk

in
–

ag
gr

eg
at

ed
ac

ti
va

ti
on

of
al

lt
ax

el
s

co
nt

ac
te

d
on

th
e

bo
dy

pa
rt

.



10PA RT I I I : D I S C U S S I O N A N D
C O N C L U S I O N S

In Chapter 8 and Chapter 9, we presented a novel methodology
that lets a robot autonomously build up a representation of the
space around its body through interaction with the self and the
nearby space. More specifically, every taxel has a spatial recep-
tive field extending into 20 cm along the normal to the skin
surface. In this space, motor/proprioceptive events (in case of
self-touching behaviors) or visual events (if external objects are
considered) are recorded. If they eventually result in physical
contact with the skin, the activated taxels update their repre-
sentation tracing back the oncoming object and increasing the
stored probability that such an event – in terms of distance and
time to contact – is likely to contact the particular taxel. Other
taxels on the body part that were not physically contacted also
update their representations with negative examples. The spa-
tial receptive field around every taxel is mediated by an ini-
tial kinematic model of the robot; however, it is adapted from
experience, thus automatically compensating for errors in the
model as well as incorporating the statistical properties of the
oncoming objects. Furthermore, we devised a simple avoidance
controller that is triggered by this representation, thus endow-
ing a robot with a “margin of safety” around its body. Finally,
simply reversing the sign in the controller we used gives rise to
“catching” or approaching the oncoming objects.

An important asset of the proposed architecture is that learn-
ing is fast, proceeds in parallel for the whole body, and is in-
cremental. That is, minutes of experience with objects coming
toward a body part give already rise to a reasonable representa-
tion in the corresponding taxels that is manifested in the predic-
tive activations – prior to contact – as well as avoidance behav-
ior. The smoothing approach used (Parzen windows applied to
the discrete representation) specifically contributes to this effect
in the case of undersampled spaces.

One possible practical limitation of the presented architecture
could be its computational and memory requirements. The dis-
tributed and parallel nature of the representation has many ad-
vantages. At the same time, the complexity grows linearly with
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the number of taxels – each of them monitoring its spatial re-
ceptive field and possibly updating the representation. How-
ever, we are convinced that this is in line with the nature of
brain computation. Furthermore, the spatial resolution regard-
ing the taxels we have chosen (with “virtual taxels” of around
2 cm in diameter on the skin surface) is likely unnecessarily
high – the body-part-centered receptive fields of neurons in the
parietal-frontal network are typically much larger (e.g. span-
ning a whole upper arm, as presented by Fogassi et al. [25]).
Also, lower resolution may still suffice to support the margin of
safety behavior. Such a modification would be straightforward
in our setup – requiring only a redefinition of the “virtual taxel”
concept.



Part IV

C O N C L U S I O N S A N D
F U T U R E W O R K
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W O R K

In this thesis, we presented to our knowledge the first robot that
learns a distributed representation of the space around its body
by exploiting a whole-body artificial skin and through physi-
cal contact with itself and the environment. This representation
naturally serves the purpose of predicting contacts with the
whole body of the robot, which is of clear behavioral relevance.
Part I described the proposed architecture, whereas Part II dealt
with the double touch paradigm, which was preparatory for the
implementation presented in Part III.

11.1 summary

Part I leveraged on insights from cognitive psychology and neu-
roscience (cf. Chapter 2) in order to propose a plausible mech-
anism of development of peripersonal space representations in
biological agents. It assumes the availability of some basic –
“innate” – behaviors; they let the subject follow a gradual de-
velopmental path in order to build up complex tactile-visual
models of the self and the nearby space. Further, it presented
a set of four comparable stages throughout which any robotic
platform – assuming it is provided with a whole-body artifi-
cial skin, such as the iCub humanoid robot used in this thesis
– can undergo in order to grow a set of perceptual and motor
capabilities comparable to what showcased by primates.

The subsequent chapters dealt with the implementation of
these aforementioned stages. Chapter 5 presented the theoreti-
cal and empirical foundations of a novel approach that let the
iCub autonomously perform a double-touch: a reformulation of
the reaching task was proven to be a key point in the achieve-
ment of such a constrained behavior. As a follow-up, Chapter 6

described an application of this framework in the context of
autonomous self-calibration for humanoid robots: an optimiza-
tion of the kinematic model of the upper limbs of the iCub was
carried out in the context of a closed-loop calibration that did
not rely on any external metrology system as ground truth.
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Finally, Chapters 8 and 9 detailed the development of tactile
visual representations on the iCub robot. Specifically, Chapter 8

dealt with the proposed architecture, that consists in a series
of a spatial, cone-shaped receptive fields extending from ev-
ery taxel the iCub’s arms and hands are provided with. They
equipped the robot with the ability to extend its tactile domain
toward the nearby space: by integrating either motor (in case of
self-touch) or visual (when external objects are involved) infor-
mation with the physical activation of the skin, they enclosed a
prior-to-contact representation of incoming events onto the skin.
Crucial to the development of this representation was the fact
that the robot was able to experience a temporal and spatial
congruency in both the visual (or motor/proprioceptive) and
the tactile systems: that is, if an event is successful in the activa-
tion of a specific taxel, that same taxel updates its probability of
being touched by this particular event (encoded in terms of dis-
tance and time to contact w.r.t. the taxel). Furthermore, this rep-
resentation was intrinsically compensating for both the noise in
the acquisition and the systematic errors in the model. We have
then capitalized this framework in Chapter 9: an avoidance and
catching controller leveraged the representation learned at pre-
vious stages in order to set up an experimental scenario in
which the robot was able to either prevent contact with or catch
incoming objects. The movement was distributed and decentral-
ized on the skin parts that were firing. This behavior endowed
the robot with two capabilities: a “margin of safety” around the
body, and a “reaching with arbitrary body parts” behavior. All
these behaviors take automatically the whole body surface (or
skin surface) into consideration.

11.2 discussion and future work

This section deals with the potential impact of this thesis for the
scientific community, pointing out possible applications and fu-
ture developments of the proposed approach. The architecture
presented in this thesis is, to our knowledge, the first attempt at
creating a decentralized, multisensory representation of a robot
and its nearby space by means of a distributed artificial skin
and the interaction with the self and the surrounding environ-
ment. In our view, this method can be employed for life-long
incremental learning in the robot, automatically incorporating
robot’s new experiences or changes to its body or sensory ap-
paratus. The robot can profit from this representation in that
it provides a prediction of contacts with the skin prior to the
actual contact.
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Importantly, the architecture presented in this thesis is not
attempting at modeling a particular brain network. Casting it
into the vocabulary common in the neurosciences, one could
say that the representation associated with every taxel that was
learned in this work would correspond to a spatial receptive
field of a neuron that is centered on that particular taxel (hence
body-part centered coordinates). The RF has a spatial, modali-
ty-independent, nature, as we demonstrated by entering it and
eliciting the “neural” response by motor/proprioceptive as well
as visual targets. However, note that this “neuron” does not
have a tactile RF – tactile sensations were used in the learn-
ing/adaptation of this RF only. Nonetheless, it would be easy
to extend our representation by constructing a bimodal visuo-
tactile or, more precisely, tactile-spatial neuron whose activa-
tion would be the sum of the “spatial” and tactile inputs. The
reference frame transformations are in our case mediated by the
kinematic model of the robot and use the “root reference frame”
of the iCub, located in its waist, as common ground connecting
all kinematic and visual chains. This is unlikely to be the case
in the brain; however, other common reference frames (e.g., eye-
centered, Cohen and Andersen [10]) have been proposed to act
in the posterior parietal cortex. In summary, the architecture
presented is a first implementation that supports the relevant
behaviors. However, since the scenarios as well as the sensory
modalities available to the robot parallel the biological situation
(at a certain abstraction level), it is open to be further grounded
in putative brain mechanisms.

The “demonstrators” – avoidance and catching – are also
only first steps in this direction. They are simply exploiting
the Cartesian solver and controller to generate movements of
a virtual point that is a result of voting of taxels activated by
an oncoming object. Avoidance differs from catching in the di-
rection of this movement vector only. This could be further dif-
ferentiated and developed, leading to simple reflexive as well
as complex whole-body avoidance mechanisms such as those
reported in monkeys [33]; an implementation in the iCub rely-
ing on force/torque feedback has been presented in Shimizu
et al. [81]. Finally, the catching is a simple mechanism that re-
sults in approaching of an oncoming object with the skin part
that was most likely to be contacted by the object. This is very
simple and clearly very different from reaching – another key
component of peripersonal space representations (especially in
the peripersonal space interpretations as space within reach).
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Future work can proceed along several directions. First, the
architecture can be refined and better grounded in concrete
mechanisms that are assumed to operate in primate brains, giv-
ing rise to first complete, physically embodied instantiations
of the mechanisms. This would provide an invaluable tool to
test the theories and crucially advance the computational mod-
eling efforts. Second, the full kinematic model of the robot
that was taken for granted in the current approach could be
dropped and the learning problem expanded to full complex-
ity dealing with the emergence of spatial representations from
motor, proprioceptive, tactile and visual inputs. Third, the ar-
chitecture proposed is prone to impact on practical applica-
tions. Whole-body tactile sensing together with a virtual mar-
gin of safety around the robot’s body dramatically increases
the robot’s own safety as well as safety as humans that share
the environment with the robot. The proposed architecture will
have to be tested in such setups and possibly enhanced also
by force/torque sensing that is already available on the robot
to guarantee robustness in all situations. Finally, with the ad-
vent of robotic skin technologies (see Dahiya and Valle [15] for
a review), frameworks similar to the one proposed can find
applications in diverse robotic platforms and are by no means
restricted to the iCub humanoid robot.



Part V

A P P E N D I X



AT H E K I N E M AT I C P R O B L E M
A N D T H E
D E N AV I T– H A RT E N B E R G
C O N V E N T I O N

The Denavit–Hartenberg (DH) convention has been introduced
by Jacques Denavit and Richard S. Hartenberg in 1955 [19]. It
has been since considered the prevailing notation to generically
express a kinematic model of a robot.

The following sections will detail the kinematic problem as
well as the DH convention, with an explicit reference to the
robotic platform used in this thesis, best modeled by a set of in-
dependent serial kinematic chains composed by revolute joints
(i.e. a set of joints whose single degree of freedom is a rotation
along one axis).

a.1 direct and inverse kinematics of a se-
rial robotic arm

Kinematics pertains to the motion of bodies in a robotic plant
without dealing with their dynamical component, i.e. the forces
and the torques that cause the motion. It is the most founda-
tional aspect of the robotics field, and for this reason a number
of different conventions has been developed in order to solve
kinematics problems.

In the following, a brief contextualization of the problem of
the direct and inverse kinematics of a serial robot arm com-
posed by revolute joints only (i.e. the one of interest for this
thesis) will be provided.

a.1.1 kinematic model of a robot

The kinematic model of a robot composed by n−joints is the
analytical description of the relationships between:

– the joint configuration vector q ∈ <n
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– the pose x ∈ <m of a specific component of the robot struc-
ture. We are typically referring to the end-effector of the
robot.

Usually, and particularly in the case of a serial manipulator,
the end-effector is placed at the very end of the kinematic chain,
whereas its base is fixed w.r.t. the world reference frame. The
end-effector pose is usually defined by a set ofm = 6 parameters
that translate into an homogeneous roto-translation matrix Tn
w.r.t. the world FoR1:

Tn =


. . . pxn

Rn p
y
n

. . . pzn
0 0 0 1

 , (15)

where Rn is the rotation matrix that describes the orientation of
the end-effector, and pxn, pyn and pzn are the three components
of its position about the x, y, and z axis respectively.

direct kinematic problem The direct kinematic problem
(also referred to as forward kinematics) deals with the identi-
fication of the pose of the end-effector given a specific joint
configuration q̂. Mathematically, it reduces to finding the direct
kinematic mapping Λ(q̂):

x = Λ(q̂) (16)

Λ can be computed by either a geometric (i.e. by manually
inspecting the kinematic chain in order to explicitly find the
relations between every link and its subsequent) or a systematic
approach (namely, by assigning frames attached to the robot
joints and using homogeneous transformation matrices). The
DH notation is one of the systematic methodologies that have
been devised in order to solve this problem. It will be detailed
in Section A.2.

inverse kinematic problem The inverse kinematics is the in-
verse problem w.r.t. what detailed in the previous paragraph,

1 It is worth noting that, in general, this approach holds for any reference frame con-
sidered. In this appendix, we will always implicitly refer to the absolute (or world)
frame of reference. For this reason, any vector will be referred to the world FoR, if
not explicitly indicated.
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that is finding the set of joint angles suitable for the robot to ful-
fill a desired end-effector pose. It is typically a nonlinear prob-
lem, with no guarantee of either the existence or the uniqueness
of the final solution (it is dependent on the redundancy of the
robot w.r.t. the assigned kinematic task).

Two types of approaches are commonly used in this case as
well: (i) an analytical method, namely an algebraic approach
that leads to the formulation of a – solvable – set of polynomial
equations; (ii) or a numerical, iterative technique, that uses the
(analytical) Jacobian matrix J(q) of the direct kinematic map:

J(q) =
δΛ(q)

δq
(17)

This last method is generally slower and computationally ex-
pensive, but is needed expecially in the case of redundant ma-
nipulators or configurations close to singularities. In this thesis,
we used such an approach in order to implement the inverse
kinematics solver needed for the solution of the double touch
task (cf. Section 5.4.2).

a.1.2 kinematics of a serial robotic arm

A serial robotic arm is modeled by an open kinematic chain. In
the general case useful for the pursuit of the goals of this thesis,
we will further assume the following: (i) the end-effector space
has m = 6 DoF, i.e. x ∈ <6; (ii) the chain under evaluation is
redundant, and it is thus composed by n joints such that n > m.

In order to compute the kinematic model of the arm under
consideration, the following rules apply:

– Every joint of the robot is equipped with a frame of refer-
ence that characterize its configuration;

– A set of homogeneous transform matrices are used in or-
der to describe the relation between each joint and its sub-
sequent;

– The pose of each joint w.r.t. the base reference frame is de-
fined by the composition of the aforementioned matrices
from the base up to the joint under consideration;

The DH notation deals with specifying a convention in order
to set these rules systematically. In the following section, an
analysis of this technique will be provided.
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Oi−1

xi−1

yi−1

zi−1

Oi

xi

ziyi

di

ϑi

ai

αi

JOINT i− 1 JOINT i JOINT i+ 1

Figure 33: Denavit–Hartenberg convention for a generic link li. The homoge-
neous rototranslation matrix between the two frames of refer-
ence Oi−1 and Oi is defined by a set of four parameters Φi =

{ai, di, αi, ϑi}.

a.2 the denavit-hartenberg notation

The Denavit-Hartenberg notation provides us with a set of rules
in order to standardize the process of iteratively constructing a
kinematic model of a robot manipulator. By referring to Fig-
ure 33, it is defined by a set of rules:

– Each link is numbered from 0 to n, starting from the base
and up to the end-effector. Accordingly, since each manip-
ulator with n+ 1 links is composed by n joints, they will
be numbered from 1 to n. Hence, link li will connect joint
ji with ji+1.

– For each link li, a reference frame Oi is be attached to the
correspondent joint ji+1, i.e. the terminal joint belonging
to the link. Its z-axis is set to be parallel to the joint axis.
For a revolute joint, this means that the z-axis is parallel
to the axis of rotation.

Given the joint axis Ji and Ji+1, the reference frames Oi−1
and Oi can still be placed in an arbitrary way; we need 6 pa-
rameters in order to describe the rototranslation between them.
Five of them are purely geometric measures, where the last one
is the joint variable. For this reason, the Denavit-Hartenberg
convention further provides a set of rules to accomplish this
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task. It defines a set of 4 parameters suitable for both revo-
lute and prismatic joints – a subset of the 6 needed to de-
scribe any possible homogeneous transformation between two
reference frames. These parameters are usually referred to as
Φi = {ai, di, αi, ϑi}; three of them are still dependent from
the geometry of the link, whereas the last one is still the joint
variable. They are depicted in Figure 33, and defined by the
following rules:

– the unit vector zi is placed along the axis of joint ji+1;

– the unit vector xi is put along the common normal to joint
i and i+ 1 axes;

– ai is defined as the distance between an intermediate refer-
ence frame Ôi and Oi; it is constant, and usually referred
to as the length of the link li;

– di is the distance between Oi−1 and Ôi. It is the joint vari-
able for a prismatic joint;

– αi is the (constant) twist angle between zi−1 and zi around
xi.

– ϑi is the angle between xi−1 and xi about zi−1. It is the joint
variable for a revolute joint.

This final set of rules univocally defines the rototranslation
between every FoR in the chain. There still are some ambigui-
ties, though:

– the origin and the x-axis of the first reference frame are
arbitrary;

– the z axis zn of the last reference frame is not specified;

– when zi−1 and zi are parallel, there is no unique definition
of the common normal between the two;

– when zi−1 and zi are incident, the determination of xi is
discretionary.

Finally, the homogeneous transformation matrix between two
successive DH frames Oi−1 and Oi is thus defined by a roto-
translation about and along axis zi−1 and a subsequent roto-
translation about and along axis xi. They are given by Equa-
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tions 18 and 19 respectively (with the omission of the “i” sub-
script in the matrix):

i−1DHî(qi) =


cϑ −sϑ 0 0

sϑ cϑ 0 0

0 0 1 d

0 0 0 1

 (18)

îDHi =


1 0 0 a

0 cα −sα 0

0 sα cα 0

0 0 0 1

 (19)

Please note that the first transformation is dependent from
the joint variable, whereas the second one is always a constant
matrix. The composition of these two matrices lead to the stan-
dard Denavit-Hartenberg matrix:

i−1DHi(qi) =
i−1 DHî(qi) ∗îDHi =


cϑ −sϑcα sϑsα acϑ

sϑ cϑcα −cϑsα asϑ

0 sα cα d

0 0 0 1


(20)

By applying this technique to extract the full set of transform
matrices for each of the n links of the chain, it is then possi-
ble to compute the pose of the end-effector as a sequence of
rototranslations from the base to the terminal element of the
chain.
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