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Abstract— With robots leaving factory environments and
entering less controlled domains, possibly sharing living space
with humans, safety needs to be guaranteed. To this end,
some form of awareness of their body surface and the space
surrounding it is desirable. In this work, we present a unique
method that lets a robot learn a distributed representation of
space around its body (or peripersonal space) by exploiting a
whole-body artificial skin and through physical contact with
the environment. Every taxel (tactile element) has a visual
receptive field anchored to it. Starting from an initially blank
state, the distance of every object entering this receptive field
is visually perceived and recorded, together with information
whether the object has eventually contacted the particular skin
area or not. This gives rise to a set of probabilities that are
updated incrementally and that carry information about the
likelihood of particular events in the environment contacting
a particular set of taxels. The learned representation naturally
serves the purpose of predicting contacts with the whole body of
the robot, which is of clear behavioral relevance. Furthermore,
we devised a simple avoidance controller that is triggered by
this representation, thus endowing a robot with a “margin of
safety” around its body. Finally, simply reversing the sign in the
controller we used gives rise to simple “reaching” for objects
in the robot’s vicinity, which automatically proceeds with the
most activated (closest) body part.

I. INTRODUCTION

Pushed by societal needs and economic opportunities,
robots are leaving controlled factory environments and enter
domains that are far less structured, possibly even sharing
living space with humans. As a consequence, they need to
dynamically adapt to unpredictable interactions and guaran-
tee their own as well as others’ safety at every moment. How-
ever, robotic technologies used in industry typically rely on
preprogrammed models and “blindly” executed end-effector
trajectories. The rest of the body is typically represented
as a kinematic chain; the volume and surface of the body
itself being “numb” and rarely taken into account. Technolo-
gies that endow robots with whole-body tactile sensing—
or artificial skin—open up new possibilities to address the
above-mentioned shortcomings [1], [2], [3]. There are several
directions in which tactile arrays covering extensive parts of
robot bodies can be exploited. One major area deals with
detection and appropriate handling of physical contacts with
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Fig. 1: Illustration of the setup. (left) Receptive field above one
of the left forearm taxels. (right) An object approaching the right
palm.

the environment or humans (e.g., [4]). Traditionally, the in-
teraction forces were controlled using a variety of techniques
(such as impedance/admittance control, hybrid position-force
control, or parallel control), relying primarily on force/torque
measurements and often assuming that contact was occurring
at the end-effector. If this assumption is not valid and in
the presence of multiple contacts, localization of the contact
points becomes indispensable for correct response. Artificial
skin can supply the necessary information [5], [6], [3].

Another area where sensing on the body surface can be
utilised is to allow the robot to autonomously learn about the
properties of its body, such as its spatial extent. Hoffmann
et al. [7] provide a survey of the literature that deals with
“learning a body schema” and note that the majority of the
studies deal with “visuo-proprioceptive calibration”. Artifi-
cial skin provides another valuable sensory modality that can
complement vision and proprioception. Alternatively, it can
even replace vision on the self-calibration task by relying on
closing the loop through self-touch configurations [8].

The work presented here in a sense combines the two
domains described above and aims at learning not only
a representation of the extent of the body itself, but also
about the space immediately surrounding it—peripersonal
space. This can then enhance the robot’s interactions with the
environment, allowing it to anticipate contacts (see Fig. 1).
We will combine visual, proprioceptive (joint encoder), and,
importantly, tactile information to achieve this.

Peripersonal space is also of special relevance for every
animal. In this space, objects can be reached for, grasped,
and, at the same time, they may pose threats and may evoke
appropriate avoidance response. In particular, we want to
mimic the visual body-part-centered receptive fields (RFs)
of neurons that were observed in monkeys [9]. Robotic
models in this direction were developed by Asada and



Fig. 2: Pressure-sensitive skin of the iCub. (left) iCub forearm with
exposed skin patches. (right) Four triangular modules with 10 taxels
each.

colleagues, employing biologically motivated learning archi-
tectures (self-organizing maps, hebbian learning, attention
modules) [10], [11]. Compared to these studies, the archi-
tecture presented here is less motivated by the putative brain
circuitry, but builds on top of existing engineering solutions
and targets practical functionality in the real robot and full
3D space around it.

One of the important behaviors are defensive responses.
The respective neurons in primate brains fire as soon as a
potentially harmful object enters their RFs, which “grow”
out of individual body parts. This gives rise to a “margin of
safety” around the body, such as the flight zone of grazing
animals or the multimodal attentional space that surrounds
the skin in humans [12]. Analogous behavior is desirable
in robots. In this work, we propose an architecture that
achieves this functionality thanks to a visual RF anchored
to each taxel (tactile element) on the robot skin. Starting
from an initially blank state, the distance of every object
entering this RF is recorded with respect to the taxel’s frame
of reference (FoR), together with information whether the
object has eventually contacted the particular skin area or
not. This gives rise to a set of probabilities that are updated
incrementally and that carry information about the likelihood
of particular events in the environment physically contacting
a particular set of taxels. In order to achieve the desired
coordinate transformations to convert visual inputs to the
respective taxel FoR, existing kinematic representations of
the robot, including head and eye, are used. However, the
representation regarding the likelihood of contact is learned
on top of this and based on actual physical contact with the
skin, thus automatically incorporating / compensating for any
inaccuracies that the existing kinematic mappings contain.

We demonstrate the utility of this representation in show-
ing avoidance responses to objects in the environment as
they come close to the skin and trigger activation in cor-
responding RFs around the “endangered” taxels. Note that
this differs from self-protective behaviors that occur only
after contact (e.g. [13] in the iCub). Crucially, the avoidance
is triggered in an anticipatory fashion prior to contact. A
similar approach was used in [14], but relying on local
proximity sensors embedded in a multimodal skin. In this
work, it is to our knowledge for the first time that a
“margin of safety” connecting visual, proprioceptive, and

Fig. 3: Object tracking schematics. See text for details.

tactile information is realized in a robot. Finally, a simple
reversal of the direction of the desired movement vector gives
rise to simple approaching or reaching behaviors—the body
parts most strongly activated by an object in the vicinity are
automatically pulled towards it.

This article is structured as follows. In Section II, we
describe the real robot and its relevant software modules,
introduce the proposed representation, the data collection
procedure, and specifications of a simulation environment.
Results will be presented in Section III, followed by a
discussion and conclusion section.

II. MATERIAL AND METHODS
A. iCub humanoid robot and key modules

The iCub is an open-source platform for research in
cognitive robotics [15]. In the following, we describe the
key components relevant for this work.

1) Artificial skin: The iCub was recently equipped with
an artificial pressure-sensitive skin covering most body parts
[16]. In the experiments performed in this work, we restrict
ourselves to the forearms and palms. The skin covering body
parts consists of patches with triangular modules of 10 taxels
each (Fig. 2 right). There are in total 23 modules on the
forearm in two patches and hence 230 taxels (Fig. 2 left).
However, for the purposes of this study—spatial RFs around
body parts—it would be an unnecessarily high resolution
to consider every taxel independently. Therefore, in what
follows, every triangular module acts as single virtual taxel.
That is, the taxel in the center of the module acts as a
representative of the whole module and an activation of any
of the module’s taxels is represented as a signal coming from
this virtual (representative) taxel.

A spatial calibration of the skin of the forearm with respect
to the iCub kinematic model has been performed in [17].
Using data from the CAD model, we have added calibration
of the palm. Therefore, the poses of all taxels (position and
orientation) as well as the virtual taxels in local reference
frames of the robot are known.

2) Joint angle sensing: Proprioceptive inputs in the iCub
simply consist in angular position measurements in every
joint. For most joints, they are provided by absolute 12bit
angular encoders.

3) Head and eyes: Vision of the iCub is provided by
two cameras mounted in the robot’s eyes. The head of the
robot has 3 degrees of freedom (DOFs) at the neck and 3
in the eyes allowing for tracking and vergence behaviors.
The movement of the eyes is coupled, following an anthro-
pomimetic arrangement. With appropriate calibration, depth
information can be extracted from binocular disparity.



(a) Object detected by the 2D Opti-
cal Flow.

(b) Object tracked by the 2D parti-
cle filter tracker.

(c) Object as seen from the 3D
stereo vision module.

(d) Depiction of the tracked object
in the 3D model of the iCubGui.

Fig. 4: Object tracking pipeline. Each figure shows the output of
one of the four modules involved.

4) Visual processing and gaze control: To track external
objects in 3D space as they approached the robot’s body, a
module featuring a visual processing pipeline was necessary:
moving objects need to be detected, segmented out of the
background, their position retrieved and followed by the
robot’s gaze. We developed a pipeline that allowed us to track
general objects under some assumptions on the availability
of visual features and limits on their velocity and size. The
software architecture is composed of several interconnected
modules, schematically depicted in Fig. 3, whereas the
outcome of each step is presented in Fig. 4. The first module
uses 2D Optical Flow [18] to detect motion in the image
plane. If the computed motion is consistent with the presence
of a moving object in the nearby space of the robot, it triggers
a pipeline composed of three interconnected modules:

– a 2D particle filter [19] able to track the object in the
image plane based on its color properties;

– a 3D stereo disparity module [20], able to convert the
2D planar information related to the incoming event
(the centroid of the object and an estimation of its size)
into 3D coordinates;

– a Kalman filter that receives 3D coordinates from the
stereo vision module and improves the robustness of the
estimation. It employs a fourth order dynamic model of
the object motion, and estimates both the 3D position
and the 3D velocity of the incoming object with respect
to the robot’s Root FoR (located in the waist of the
robot).

Finally, a gaze controller was employed in order for the
head to smoothly follow the tracked object in space. The
details of the gaze controller can be found in [21].

5) Kinematic model and coordinate transformations:
The 3D position of the object in the Root FoR obtained
as described in the previous section needs to be further
transformed into the FoR of individual taxels. Learning these

transformations was not the goal of this work; therefore, we
have employed the existing kinematic model of the iCub
that is based on the Denavit-Hartenberg (DH) convention and
embedded in a software library (iKin [21]). The final trans-
formation from the last link of the DH chain to individual
taxels comes from the skin calibration.

However, these composite transformations are subject to
numerous errors that include (i) mismatch between the robot
model based on the mechanical design specifications (CAD
model) and the actual physical robot; (ii) inaccuracies in
joint sensor calibration and measurements; (iii) unobserved
variables from the sensed configuration coming from joint
backlash or mechanical elasticity; (iv) inaccuracies in taxel
pose calibration; (v) additional errors in visual perception
coming from inaccurate camera calibration etc. As a whole,
these errors can amount to several centimeters. For example,
it can happen that oncoming objects will seemingly penetrate
the robot’s skin—based on our model and measurements,
not in reality—and will thus have negative distance w.r.t.
the taxel normal. However, in the approach adopted here,
the systematic component of the errors will be automatically
compensated for by the representations that every taxel will
learn regarding the space surrounding it.

B. Representation of “Space Around the Body”

We have chosen a distributed representation in which every
taxel is learning a collection of probabilities regarding the
likelihood of objects from the environment contacting it.

1) Data collection for learning: A volume was chosen to
demarcate a “visual receptive field” around every taxel. It is
cone-shaped and grows out of every taxel along the normal to
the local surface and extends to maximum 20cm away from
the taxel (green region in Fig. 1 left and Fig. 5). External
objects were then approaching individual skin parts (Fig. 1
right). Learning was realized in a local, distributed, event-
driven manner. Once an object entered the RF, it marked the
onset of a potentially interesting event. From this time on,
the position of the object w.r.t the taxel was recorded such
that the distance D could be computed:

D = sgn(
−→
d · −→z )||

−→
d || (1)

where
−→
d is the displacement vector pointing from the taxel

to the event (center of the oncoming object) as measured by
the visual processing pipeline described in Section II-A.4,
and −→z is the z-axis of the reference frame centered on the
taxel and pointing outward (coincident with the normal to the
skin surface at the taxel position) – see Fig. 5. The sign of
their dot product is thus positive if the angle between them is
lower than 180◦, i.e. if the object is belonging to the positive
hemisphere extending from the taxel. Hence, according to
our definition, the distance, D, will preserve the information
about the relationship of the event w.r.t. taxel normal. In
this way, objects apparently “beneath” the skin surface will
acquire negative distances, distinguishing them clearly from
their counterparts in the positive hemisphere (green area in
Fig. 5).
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Fig. 5: Receptive field of a taxel and approaching object (event).
See text for details.

This procedure—logging of D of approaching objects—
proceeded in parallel for every taxel whose RF has been
penetrated. Data was buffered for 3 seconds and it was used
for learning only if the object eventually contacted the skin
and was perceived by at least one taxel. In this case, a
learning iteration was triggered that proceeded as follows:
(i) For all the taxels that experienced contact, the buffer of
object positions in their local FoR was traversed back in
time with time steps of 50 ms. While the object was still
in their respective RFs, the distance at every time step was
recorded as positive examples in every taxel’s “memory”. (ii)
For all the other taxels on the same body part, the procedure
was analogous, but negative examples were appended to the
respective memories.

2) Internal representation: We defined the range of D as
[−10, 20]cm. This space was discretized into equally sized
bins (different resolutions were tested, cf. Section III-A).
Every taxel stored and continuously updated a record of the
count of positive and negative examples it has encountered
for every bin. The main advantage of this representation
is its simplicity and ease of incremental updating. Most
relevant for the agent is an estimation of the probability of
an object hitting a particular part of the skin. Thus, for every
oncoming object, its distance w.r.t. every taxel can be binned
in the manner described above and a frequentist probability
estimate obtained simply as:

P (D) ≈ f(D) =
npositive(Di)

npositive(Di) + nnegative(Di)
(2)

where Di is the bin in which the distance fell. Such an
approach—discretized representation and querying—would
constitute the simplest solution. However, it may give rise
to unstable performance, in particular in the case when
the state space is undersampled. Therefore, it is desirable
to obtain a continuous function f that can be sampled at
any real values of D and that is capable of smoothing out
the discretized space1. This has been achieved by adapting

1It is worth noting that only the bins corresponding to discretized D
have estimates of a probability function associated with them, each bin
Di independently from others. However, f(D) cannot be interpreted as a
probability mass function (in discrete case) or probability density function
(in continuous case), because the overall probability for the whole range of
D can take any value and does not sum up to 1.

the Parzen-Window density estimation algorithm [22] to our
situation—employing it as a data interpolation technique. In
a 1-dimensional case, the interpolated value p(x) for any x
is given by:

p(x) =
1

n

n∑
i=1

1

h2
Φ

(
xi − x
h

)
(3)

where xi are the data points in the discrete input space, Φ is
the window function or kernel and h is the bandwidth param-
eter, which is responsible for weighting the contributions of
the neighbors of the point x. We used a Gaussian function,
hence we have:

p(x) =
1

n

n∑
i=1

1√
2πσ

exp

(
− (xi − x)2

2σ2

)
(4)

For the standard deviation σ, different settings were explored,
as will be presented in the Results Section. In summary,
for any value of D = d, the final interpolated value, p(d),
represents an estimate of the probability of an object at
distance d hitting the specific taxel under consideration.

C. Monte Carlo simulation of a single taxel model

In order to investigate the behavior of the representation
proposed in Section II-B and to find suitable values for its
parameters, a Monte Carlo simulation was carried out in the
Matlab environment. To this end, a 3-dimensional model of
a single taxel and its surroundings with oncoming simulated
objects was set up. The model parameters were chosen to
mimic the real robot setup as close as possible. The simulated
taxel itself had a radius of 0.235 cm, which mimics the radius
of the real iCub taxels. However, objects landing within 2 cm
from the taxel’s center were still considered positive, resem-
bling the size of a triangular module that is composed of 10
taxels—the basic building block of the iCub skin (see Fig.
2). These “virtual taxels” were used also in the real setup. In
addition, the oncoming objects were also simulated. Since the
nature of our data collection and learning method requires
positive examples (objects contacting the virtual taxel) as
well as negative examples (objects contacting neighbouring
taxels), we simulated additionally 3 neighbouring virtual
taxels. We implemented a stochastic “shower” of objects with
their starting points uniformly distributed in a “starting zone”
and their landing points following a Gaussian distribution
centered on the simulated taxel (µ = 0; σ = 5 cm). The
velocity of the object was a vector directed from the starting
point to the landing point, with speed uniformly distributed
between 5 cm/s and 15 cm/s (but constant over the time).
With the object’s trajectory thus defined, its position was
then sampled at 50 ms.

D. Avoidance and reaching controller

The representations learned were finally utilised in an
avoidance/reaching scenario. The robot was able to exploit
the learned representation in order to either avoid or catch an
approaching object with any of the skin parts that have been
trained. The experiments were conducted by presenting the
robot with a series of objects detected through the optical



flow tracker (Section II-A.4), similarly to the learning stage.
Any oncoming object thus triggered an activation in each
taxel given by the taxel’s previous experience with such
events (in terms of D). Consequently, this gave rise to a
distribution of activations throughout the skin. In order to
achieve the desired behavior, we implemented a velocity
controller able to move any point of either the left or the right
kinematic chain in a desired direction. During an avoidance
task, the motion should be directed away from the point of
maximum activation, along the normal to the local surface
in that point. For catching, the desired movement vector is
the same, only in opposite direction. For this reason, we
computed a weighted average for both the position of the
avoidance/catching behavior and its direction of motion:

P (t) =
1

k

k∑
i=1

[ai(t) · pi(t)]

N(t) =
1

k

k∑
i=1

[ai(t) · ni(t)]

(5)

where P (t) and N(t) are the desired position and direction
of motion in the robot’s Root FoR respectively, pi(t) and
ni(t) are the individual taxels’ positions and normals. These
are weighted by the activations, ai(t), of the corresponding
taxels. The weighted average is computed by cycling through
all the taxels whose activation is bigger than a predefined
threshold at any given time. Therefore, the resultant posi-
tion and the direction of motion of the avoidance/catching
behavior were proportional to the activation of the taxels’
representations and changed dynamically as the activation
levels of different taxels varied. The velocity control loop
employed a cartesian controller [23] whose reference speed
was fixed to 10cm/s.

III. RESULTS

A. Learning in a single taxel model

The parameters of the proposed representation (Section
II-B) and its behavior in different circumstances were inves-
tigated in a single taxel model (Section II-C).

Firstly, we studied the effect of two key parameters: the
number of bins (nbins) used for discretizing the input space
and the standard deviation σ used in the Parzen Window
representation (cf. Equation 4). For all the experiments,
the number of input events was 100, i.e. 100 objects were
fired toward the taxel and sampled at 20 Hz (50ms). The
representations learned are shown in Fig. 6, depicting 4
rather extreme combinations: nbins = [8, 48] and σ = [4 ∗
bin size, 0.25∗bin size] respectively (where bin size is
the width of the single bin and varies with nbins). Whereas
a smaller number of bins (top plots) might be useful in the
case of few training samples (more data points per bin),
it has the obvious consequence of losing resolution of the
representation. Conversely, a high number of bins (bottom
plots) is prone to give rise to very “jagged” profiles, in
particular if the input space is not sufficiently sampled. To
counter this effect, the bandwidth parameter σ of the Parzen
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Fig. 6: Different parameter settings of proposed representation. Y-
axis, “activation”, corresponds to the learned likelihood of the object
at distance D contacting the taxel. Blue rectangles represent the
value of f(D) (cf. Eq. 2) according to the discretization of the
input space into bins. The red line represents the Parzen Window
interpolation of f(D) (Eq. 4).
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Fig. 7: Effect of systematic errors / offsets on learned representation.
(left) −8cm error; (right) +8cm error. See text for details and Fig.
6 for a description of the plots.

window interpolation can be utilised. This is demonstrated
in the left plots, where σ = 4 ∗ bin size demonstrates
a pronounced smoothing effect, while sacrificing some of
the details of the representation. Therefore, our final choice
was a compromise between these extremes: nbins = 20,
σ = bin size. From now on, this set of parameters will be
used.

In a second step, the proposed representation was tested
under different environmental conditions. In particular, we
validated it with different amounts of systematic error, noise
in the measurements, and number of training samples. First,
in order to come closer to the situation in the real robot,
we accounted for the fact that the object position is subject
to systematic errors / offsets as detailed in Section II-A.5.
An offset of −8cm (+8cm) was thus introduced on the
distance measurements in the simulation – see Fig. 7. The
representation compensates for the offset: it is most strongly
activated at the distance corresponding to the actual contact,
rather than at 0 distance that comes from the inaccurate
model (or measurement).

Subsequently, we performed a set of simulations in which
the taxel was subject to a variable number of input events and
different amounts of noise. The results of 10 trials with every
parameter setting are depicted in Fig. 8. From now on, only
Parzen window interpolation will be shown (no bins). Fig. 8a
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(a) 1000 events per trial,
no noise (ideal case)
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(c) 1000 events per trial,
Gaussian noise

Fig. 8: Effect of number of samples and noise on representation.
Representation learned from single trials (thin lines in plots);
average of 10 trials (thick blue lines); standard deviation (blue area).
(c) Gaussian noise added to every velocity (µ = 0, σ = 5cm/s) and
position (µ = 0, σ = 2cm) component of the simulated oncoming
object.

represents the ideal case, with 1000 input events per trial and
no noise in the measurements: with a sufficient amount of
data, the responses converge to a stable representation. Fig.
8b depicts an extreme situation with only 10 input events per
trial (10 objects coming onto the taxel). In this case, there
is high variability in the learned representations, indicating
that more samples would be necessary. Finally, Fig. 8c is
addressing the presence of noise in the acquisitions (with
1000 events per trial). The results are only slightly drifting
from the ideal case of 8a.

B. Learning in the real robot

The proposed framework was then tested in a real-world
scenario in which external stimuli were nearing the robot’s
body—real objects were coming onto the iCub’s skin. The
objects were detected, tracked and their trajectory prior
to contact was recorded and later used for learning the
representation of nearby space in corresponding taxels. The
tracking was performed with the visual processing pipeline
described in Section II-A.4. This setup was validated using
two differently shaped objects—a cube and a small soccer
ball—approaching the taxels on the robot’s body. Training
was applied to 4 virtual taxels (cf. Section II-A.1) placed in
the inner part of the left forearm, 4 belonging to the outer
part of the left forearm, and 4 virtual taxels of the palm of
the right hand. Please refer to the accompanying video for
an overview of the experiments (full resolution available at
http://youtu.be/scaFDZZnIZs).

With both objects taken together, we conducted a total of
138 trials for the right hand, 126 trials for the inner part of
the left forearm, and 76 trials for the outer part of the left
forearm. Note that each of the trials/events of objects nearing
the robot were sampled for 3s before contact and resulted
in up to 60 samples entering the representation of individual
taxels. The results are shown in Fig. 9 with right hand on
the left (all 4 taxels shown; 1916 samples per taxel on avg.),
inner part of the left forearm in the middle (3 taxels out of
4 received sufficient amount of data, 864 samples per taxel
on avg.), the outer part on the right (3 taxels out of 4 are
depicted; 246 samples on avg.). Unlike in Fig. 8, here every
line in the plot corresponds to the aggregate representation
learned by a particular taxel (in its FoR) from all events taken
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(a) Right hand (palm).
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(b) Left forearm (inter-
nal taxels).
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(c) Left forearm (exter-
nal taxels).

Fig. 9: Representation of nearby space learned by individual taxels
on the iCub. Every line in the plot corresponds to the representation
learned by a particular taxel (in its FoR).

together.
The representations learned for the taxels on inner part

of the right hand (right palm) are very smooth, with little
variance between the neighbouring taxels and matching
the predictions obtained from simulation (cf. Fig. 8c). The
forearm taxel representations learned (Fig. 9b, Fig. 9c) rely
on comparatively fewer samples than the palm and are thus
less smooth and display bigger variance (but some variance
is correct due to the different physical placement of the
taxels and hence different experience they were subject to).
Interestingly, the forearm taxels’ representation demonstrate
that there was a systematic error (as we studied in simulation,
cf. Fig. 7) that can be possibly attributed to the coordinate
transformation pipeline (Section II-A.5). The effect is less
clear in the inner part of the forearm (middle figure), but
the peaks of two taxels’ representations are suggestive of
a positive offset of about 3 cm. For the outer part of
the forearm (right figure), the effect is clearly visible with
maximum activation crossing the distance axis at a negative
offset of around −5 cm. Since the taxels lie on opposite
sides of the forearm, the opposite offset sign is plausible.
Importantly, the representations automatically compensate
for this error.

C. Exploitation of learned representations of nearby space

The utility of the learned representations was validated
during additional experimental sessions. The setup was iden-
tical to the training sessions, but we used a new object (a pink
octopus toy) to approach the robot’s body parts. First, the
performance of the representation was qualitatively verified
by relaying the activations pertaining to the the taxels’ nearby
space to the visualization that normally receives activation
from the iCub skin (with green color for the nearby space
activations; red for tactile inputs – see accompanying video).
Indeed, objects approaching the body parts trained previously
elicited predictive, prior-to-contact, activations.

Then, to demonstrate the behavioral utility of this capacity,
we connected these activations that anticipate contact to
avoidance/reaching controllers as described in Section II-D
above. Only activations above a certain threshold contributed
to the resultant movement vector that was executed by
the controller. This threshold was empirically set to 0.4,
corresponding to a 40% chance of that taxel being contacted
by the oncoming object (according to the representation it
learned).
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Fig. 10: Avoidance behavior. (left) Left forearm. First approaching
behavior was directed to the external part of the forearm (taxels in
tones of green); second approach toward the internal part (taxels
in tones of red) (right) Right hand. See text for details and consult
accompanying video.

1) Avoidance with whole body surface: An experimental
session of roughly 20 min. duration in which the experi-
menter performed a series of approaching movements, alter-
nating between the body parts and varying the approaching
direction, was conducted. Here we restrict ourselves to
a qualitative assessment. In short, the avoidance behavior
was successfully triggered prior to contact in all cases. A
snapshot illustrating typical behavior in a 14 s window for
the left forearm (Fig. 10 left) and a 11 s window for the
right palm (Fig. 10 right) is shown—with two approaching
events in each plot. Representations pertaining to the same
taxels of the left forearm and the right hand shown in Fig.
9 were considered. The top plots depict the distance of
the approaching object from the individual taxels (in their
respective FoR). The bottom plots show the activations of the
learned representations for each taxel. As the object comes
closer, there is an onset of activation in the representations
of the “most threatened” taxels. Once the activation level
exceeds a predefined threshold (0.4 in this case – horizontal
line in bottom plots), the avoidance behavior is triggered.
This is illustrated in the top plots with the shaded violet
area that marks the velocity of the body part as commanded
by the controller. The upper plots clearly demonstrate that
the avoidance behavior was effective—a safety margin was
always preserved as the object never touched the robot.

2) “Reaching” with arbitrary body parts: In a similar
fashion, we probed the “reaching” controller, which was
identical to the avoidance one but with the opposite direction
of movement in a roughly 10-min. session. A snapshot
illustrating the performance while approaching both the inner
part of left forearm and the right hand is shown in Fig. 11.
The graphical illustration is the same as in the avoidance
case. The spatial representations pertaining to the taxels get
activated (bottom plot) and trigger the movement, which is
approaching the object this time. In addition, the bottom plot
illustrates also the physical skin activation (red shaded area).
Importantly, contact is generated in both cases, as the skin
activation testifies.
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Fig. 11: “Reaching” with arbitrary body parts. (left) Left forearm.
Internal taxels in tones of red; external taxels in tones of green.
(right) Right hand. See text for details and consult accompanying
video.

IV. DISCUSSION AND CONCLUSION

In this work, we presented to our knowledge the first robot
that learns a distributed representation of space around its
body by exploiting a whole-body artificial skin and through
physical contact with the environment. More specifically,
every taxel has a spatial receptive field extending into 20 cm
along the normal to the skin surface. In this space, “visual
events” triggered by objects coming close to the robot are
recorded. If they eventually result in physical contact with the
skin, the activated taxels update their representation tracing
back the oncoming object and increasing the stored proba-
bility that such an event is likely to contact the particular
taxel. Other taxels on the body part that were not physically
contacted also update their representations with negative
examples. The spatial RF around every taxel is mediated by
an initial kinematic model of the robot; however, it is adapted
from experience, thus automatically compensating for errors
in the model as well as incorporating the statistical properties
of the oncoming objects. This representation naturally serves
the purpose of predicting contacts with the whole body of the
robot, which is of clear behavioral relevance. Furthermore,
we devised a simple avoidance controller that is triggered by
this representation, thus endowing a robot with a “margin of
safety” around its body. Finally, simply reversing the sign
in the controller we used gives rise to simple “reaching” for
objects in the robot’s vicinity, which automatically proceeds
with the most activated (closest) body part.

An important asset of the proposed architecture is that
learning is fast, proceeds in parallel for the whole body, and
is incremental. That is, minutes of experience with objects
coming toward a body part give already rise to a reasonable
representation in the corresponding taxels that is manifested
in the predictive activations—prior to contact—as well as
avoidance behavior. The smoothing approach used (Parzen
windows applied to the discrete representation) specifically
contributes to this effect in the case of undersampled spaces.

One possible practical limitation of the presented architec-
ture could be its computational and memory requirements.
The distributed and parallel nature of the representation has



many advantages. At the same time, however, the complexity
grows linearly with the number of taxels—each of them
monitoring its spatial RF and possibly updating the repre-
sentation. Nonetheless, this can be mitigated by adapting
the resolution of the learned representation—in two ways.
First, the spatial resolution regarding the taxels we have
chosen can be easily adapted by redefining the “virtual taxel”
concept (currently, we worked with “virtual taxels” of around
2 cm in diameter on the skin surface, corresponding to the
size of the triangular modules). This would directly affect
both the computational requirements—fewer taxels (threads)
will monitor the space around them—as well as memory
requirements, since fewer representations will be stored and
updated. Second, as we have shown in the simulation part,
the resolution of the space around the taxels can also be
adapted by choosing the number of bins. This directly
impacts the storage needed, but also affects the computation
time during the application of the Parzen window algorithm.

The demonstrators—avoidance and “reaching”—are sim-
ply exploiting the Cartesian Controller to generate move-
ments of a virtual point that is a result of voting of taxels
activated by an object near the robot. The direction of the
movement is also a weighted average of the normals of the
activated taxels. Avoidance differs from “reaching” in the
direction of this movement vector only. The response is thus
local in a sense that there is only one averaged locus for the
response. At the same time, the response is executed globally,
since the Cartesian controller is employed, recruiting multi-
ple joints in a coordinated fashion (unlike local reflexes that
involve single joints only [13], [14]). However, this approach
will not automatically scale to multiple skin parts activated
at the same time (the averaging may produce counterintuitive
locus and movement vectors in some configurations) or to the
presence of multiple objects near the robot. The “reaching”
behavior is in fact rather a local “magnet-like” response that
will pull the skin parts close to an object toward it. No
response will be elicited if the object leaves the 20cm zone
surrounding the body. Therefore, integrating the proposed
representation with proper reaching in the robot’s workspace
in the presence of clutter, while utilising the safety margin or
the “magnetizing margin” on the way, remains the topic of
future work. In addition, the proposed representation could
also be expanded by incorporating an additional variable next
to the distance, namely the velocity or time to contact of
the oncoming objects. Finally, the framework proposed is
applicable also to other robots that are equipped with the key
sensory modalities: vision (could be easily replaced by other
sensors such as Microsoft Kinect or laser range finders),
proprioception, and touch (see [1], [2], [3]).
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