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Abstract— This work deals with the problem of 3D estimation
and eye-hand calibration in humanoid robots. We first show
how to implement a complete 3D stereo vision pipeline for
humanoid robots, enabling online and real-time eyes calibra-
tion. We then introduce a new formulation for the problem
of eye-hand coordination. Using the iCub humanoid robot, we
developed a fully automatic procedure based on optimization
techniques that does not require any human supervision. The
end-effector of the humanoid robot is automatically detected
in the stereo images, providing (theoretically) infinite training
examples for learning the vision-kinematics mapping. We re-
port exhaustive experiments using different machine learning
techniques; we show that a mixture of linear transformations
can achieve the highest accuracy in the smallest amount time,
while ensuring real-time performances. We demonstrate the
usefulness and the effectiveness of the proposed system in two
typical robotic scenarios: (1) object grasping and tool use; (2)
3D scene reconstruction.

I. INTRODUCTION

Recently new autonomous and humanoid robots have been
designed and assembled; novel algorithms that allow them
to perceive, feel, move, walk, have been proposed and suc-
cessfully implemented. Still, integrating all or some of these
capabilities has proved to be as demanding as developing
them individually. In this regard, one of the most challenging
problems is connecting visual perception to motion control,
which is fundamental to make the robot correctly respond
to what it sees. One of the most classical research topics in
the field is estimating accurate 3D points of the real world
from images acquired by a robot’s visual system, and use
this estimation to control the movement of the robot. This
work aims at providing a robust 3D estimation and eye-hand
calibration algorithm for the iCub [12] robot.

There has recently been a wide spread of cheap 3D sensors
such as Kinect, which allow retrieving 3D information easily.
In the context of humanoid robotics though, the goal is to
achieve generality with eyes capable of fast movements, that
can relocate quickly to points of interest in the world and can
work indoors as well as outdoors. The Kinect for example is
severely limited outdoors when the projected infrared pattern
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becomes virtually invisible. The humanoid robot considered
in this work is iCub, which is equipped with a binocular
camera system mimicking biological vision. It exploits the
same principle humans rely on to retrieve depth information:
the binocular disparity. Binocular disparity refers to the
difference in image location of an object seen by the left
and right eyes, resulting from the eyes’ horizontal separation.
The human brain uses binocular disparity to extract depth
information from the two-dimensional retinal images in
stereopsis. In computer vision, binocular disparity refers to
the difference in coordinates of similar features within two
stereo images [6]. Given the disparity between left and right
image, a 3D point in the space can be accurately computed
with respect to the camera reference system.

If the two cameras were perfectly aligned, the projection
of a point in the two images would be separated only by a
shift along the horizontal direction. This is extremely rare
though (e.g. the cameras may be slightly rotated off-level),
therefore a stereo vision calibration step, which consists in
the estimation of the cameras’ relative position, is required to
compute disparity with a simple search along the horizontal
direction. In humanoid robots this problem becomes harder,
as robot cameras usually have many degrees of freedom.
In our case, iCub’s eyes can change their vergence, version
and tilt, which impact on the relative rotation and translation
between the two cameras. In this paper we first describe
the full pipeline adopted to accurately estimate 3D points
using the cameras of the iCub. We also integrate the iCub
kinematics to achieve a better refinement of the camera
positions. This is a very special case in the literature: it is not
a standard stereocamera due to the degrees of freedom of the
eyes, thus an on-line and real-time calibration is required.

The 3D point estimation in humanoid robotics is already
a challenging problem. Furthermore, the obtained 3D points
are computed with respect to the camera reference frame,
therefore they are not useful for reaching or tracking as
they are; we have to map the 3D points to a common
reference system of the iCub, (name ROOT from now, see
Fig. 1). Typically, the kinematic model of the robot is not
precise enough to provide an accurate mapping between the
position of a 3D point with respect to the cameras and the
position of the same point with respect to the root frame.
Indeed, humanoid robots are sophisticated machines and
mechanical inaccuracies are common. For instance, it is not
possible to ensure that the camera CCDs are mounted exactly
in the modeled position, and even a small error produces
large pixel shifts that increase non-linearly with the distance



from the cameras. Another relevant aspect is represented
by the unmodeled components such as tendons elasticity
and friction that might have a not negligible influence in
the way the robot computes its current configuration from
the encoders values. These inaccuracies cause the vision-
estimated 3D point with respect to the root frame to be
slightly shifted. These kind of errors affect also the kinematic
prediction of the 3D position of the end-effector with respect
to the root frame, therefore the point perceived by vision
is usually not the same acquired from the kinematics (see
Fig. 1). As a consequence, the final offset between the
3D point with respect to the root frame computed through
stereo vision and the same 3D point predicted by the
kinematics could vary, on the iCub, from a few cm up to
6 cm. This is the typical eye-hand calibration problem. We
developed a new approach to solve this problem, which is
fully automatic and does not require any calibration pattern.
Notably, the calibration procedure might need to be launched
quite frequently, as the wear of mechanical parts and the re-
tuning of relative encoders scale taking place at each robot
startup are likely to produce slight modifications affecting
the internal kinematic model of the platform. Therefore,
our proposed method is also incremental (online) and very
fast. We give a quantitative evaluation of such algorithm,
comparing different methodologies. Finally, we present a
number of applications that benefit from accurate calibration,
allowing the robot to perform tasks that require accurate
positioning.

Fig. 1. A sketch of the iCub, the humanoid platform used to evaluate the
proposed method. Notably, iCub’s cameras have 6 degrees of freedom. The
known kinematics is used to map the end effector position and 3D vision
points to a common ROOT reference frame.

II. RELATED WORK

Pioneer works in the field of eye-hand coordination are
the work of Tsai et al. [23], [22] and Shiu et al. [17],
which tackle the problem by considering first fitting rota-
tions and then recovery the translation. Later approaches

attempt to simplify the notation and compute closed form
solutions [27], [2]. In [27] quaternions are used to esti-
mate the rotational part, whereas [2] uses singular value
decomposition. Works such as [28], [4] try to estimate
both rotation and translation simultaneously. Recently (e.g.
[18]), the objective became closing the loop among motions
of multiple cameras and end-effector; in these calibration
techniques, the assumption that the camera and the end-
effector move using the same rigid transformation is dropped
in favor of a wider generality. In [14] the authors reach very
accurate results by means of a calibration pattern and a set
of laser devices used in conjunction. The main limitation
of all the mentioned methods turns out to be the use of
calibration patterns in order to obtain a robust camera motion
estimation. Sometimes the camera motion is even assumed
to be known. The closest approaches to ours are [1], [16],
which compute the camera position using a structure from
motion pipeline, without resorting to calibration patterns.
These techniques perform reasonably well; differently from
our method though, they assume a complete knowledge of
the end-effector motion (i.e. perfect kinematics model). In
most of the proposed algorithms the camera is fixed on the
hand, whereas our robot’s cameras are mounted in the head.
Furthermore, all the works mentioned so far do not deal
with multi-degree-of-freedom cameras. Alternative methods
are those based on machine learning, such as the Artificial
Neural Network [8] and the Gaussian Processes [9]. These
techniques have been lately exploited in order to estimate
the spatial ego-sphere of a humanoid robot. However, they
require two robotic platforms to generate ground-truth data,
and the accuracy is remarkable only along one axis per
time (e.g. the error on the X axis is around 0.8 cm); when
considering all the axes simultaneously, the overall error is
around 3.2 cm [9].

Compared to industrial robots, humanoids tend to be
designed with resort to more sophisticated mechanical and
software architectures, with the focus on adaption to the
environment [12] (e.g. developmental robotics); in this sense
the strong assumption of a perfect kinematic model cannot be
satisfied. As a consequence, all the aforementioned methods
are prone to failure if applied in the typical scenarios
of humanoid robotics, since they build on the hypothesis
that the end-effector motion is somehow provided. On the
contrary, we take inspiration from neurobiological evidences
[25], which show that the brain intrinsically incorporates
a mapping between the eye and the hand, regardless the
motion performed; interestingly, it has been demonstrated
that such a spatial relation is updated incrementally, over
time, while humans grow and/or use tools to modify their
effectors. To replicate this mechanism, we first carry out a
preliminary learning stage, where the eye-hand calibration
is retrieved from the data using a supervised approach.
Subsequently, at run time, this mapping is employed directly,
without the need for demanding nonlinear solutions. Finally,
similarly to the human brain, our map can be easily relearned
online whenever new conditions arise to change the robot
configuration. In summary, our main contributions are:



• An eye-hand calibration algorithm in the context of
humanoid robotics, where several impairments (e.g.
unmodeled elasticity and wear of the parts) prevent from
accurately relying on the kinematic model. Therefore
we do not have constraints regarding the camera/end-
effector motion.

• Robustness against occlusion thus enabling generic
camera configurations different from the in-hand cam-
eras.

• Use of visual features to recover 3D structure without
employing depth sensors. The entire system is based
on standard RGB cameras and a six degree of freedom
head (eye and neck).

• Use of visual features to match the end-effector frame
to the camera reference system: the pipeline is fully
automatic and does not require any human supervision.

• The learning strategy we propose models different end-
effector and eyes configurations, and during the testing
phase does not need to compute expensive non-linear
solutions.

III. THE SYSTEM

The general formulation for eye-hand calibration starts
from the following equation:

AX = XB, (1)

where A ∈ R4×4 is a rototranslation matrix that represents
the camera motion; it can be decomposed in a rotational part
RA ∈ R3×3 and a translation vector tA ∈ R3. The matrix
B ∈ R4×4 is the end-effector motion, and X ∈ R4×4 is
the unknown transformation that relates the two reference
systems. In general terms, the problem can be formulated as

AX = ZB, (2)

where the end-effector and the camera are related by two
different transformation matrices.

Fig. 2. Left: A typical scene seen by the robot. Middle: The depth
map retrieved by the vision system based on pure kinematics calibration,
producing poor results. Right: The improved depth map obtained after the
calibration described in Section III-A.

State-of-the art methods usually make assumptions regard-
ing the knowledge of A and B, or they use calibration
patterns. Our context is different though, since we try to solve
the problem without imposing any assumption. In particular
we exploit optimization techniques to model the function
f(A) = B, avoiding the explicit computation of the matrix
X. Furthermore, since the matrices A and B are unknown,
we estimate them, accounting for the noise.

Solving this problem enables any robotic platform to
perform reaching and manipulation tasks with very high

precision. In general, in order to obtain a very precise
reaching given visual 3D points, the following conditions
must hold:

1) 3D points with respect to the camera are very accurate.
2) The transformation from the camera to the end-effector

is very accurate.
The first point can be addressed by using very precise

depth sensors like Kinect. However our platform, iCub (see
Fig. 1), is meant to be a cognitive platform, where the goal is
to replicate human-like behaviors using the same capabilities.
The iCub visual system is unusual in the literature related
to vision: it mounts two cameras, but it has 6 degrees of
freedom (3 for the eyes, 3 for the neck), thus it is not a
stereocamera. If the kinematics between the two cameras
were perfect, the extrinsic parameters of the cameras could
be assumed known and 3D points could be computed accu-
rately. However, in practice, using only the kinematics leads
to imprecise image rectification and therefore poor disparity
maps (see Fig. 2). On the other hand, standard off-line stereo
calibrations are effective only when a particular and fixed eye
configuration is imposed. Since our robot’s cameras move
continuously, a real-time estimation of the camera relative
positions is required.

The transformation between the point perceived by the
eyes and the same point perceived by the end-effector could
be obtained again exploiting the known kinematics; however
in general model imprecisions lead to very poor results. An
example of this failure is shown in Fig. 4, where the expected
end-effector position computed by the kinematics (green dot)
is shifted with respect to the one computed by stereo vision
(red dot).

In the following, we propose an algorithm to solve the two
following sub problems:
• 3D Structure Estimation. We show how to calibrate

on-line and in real-time the iCub camera relative posi-
tions. This procedure generates 3D points with respect
to the camera reference system (and therefore the matrix
A).

• Eye-Hand Calibration. We describe a method to col-
lect 3D points from the camera reference system (A)
and the end-effector position (B). Then we employ
optimization techniques to learn the mapping between
cameras and kinematics. We further show that a fast
linear mapping is enough to obtain the highest results.

Solving both the sub problems in cascade allows retrieving
final 3D points that, perceived by the stereo vision system,
can be employed by the kinematics to execute reaching or
more complex tasks.

A. 3D Structure Estimation

We consider couples of images acquired by the iCub stereo
vision system. The main difficulty consists in the estimation
of the two view geometry that allows for the rectification
process of the images. After the rectification, any state-of-
the-art disparity map algorithm can be used. In general a
3D point X = [x,y, z,1] is projected (up to a scale factor



s) into the image plane x = [u,v,1] using a perspective
transformation:

sx = PXT, (3)

where P ∈ R3×4 is known as the camera matrix and is
described by intrinsic and extrinsic parameters:

P = K[R|t], (4)

where K ∈ R3×3 is the matrix of the intrinsic parameters,
the [R|t] is the matrix of the extrinsic parameters represented
by a rotation R ∈ R3×3 and a translation vector t ∈ R3×1.
The intrinsic parameters need to be estimated only once; this
can be done using standard calibration methods described in
[6]. We now describe how to estimate extrinsic parameters
effectively in real-time.

1) Undistorted Images: we first remove the image dis-
tortion, which entails lines to be deformed. Knowing the
intrinsic parameters and the distortion coefficients, the im-
ages can be remapped to two new frames that do not contain
distortion.

Fig. 3. An example of feature matching between left and right images.
SIFT detectors and descriptors are used. We show only strong matches after
the kinematic filtering and the RANSAC outlier rejection scheme.

2) Feature Matching & Fundamental Matrix: we now
need to estimate the Fundamental Matrix F ∈ R3×3 that
relates corresponding points in two images (i.e. matches).
Given a match x,x′, it holds:

x′
T
Fx = 0. (5)

In this work we used SIFT detectors and descriptors [11] to
compute keypoints from the undistorted images and perform
the matching step (see Fig. 3). Being rank 2 and up to scale,
the matrix F can be estimated using at least 7 points. Alter-
natively, it can be calculated employing the camera matrices
PL and PR [6]. Among the set of the computed matches
there will be some false positive, therefore we cannot use
them at this stage. The known kinematics and the intrinsic
parameters though, allow us to retrieve an initial estimation
of the two camera matrices PL and PR; however due to
mechanic imprecisions, they need to be refined. Therefore
we combine the two methods, first computing an estimated
Fundamental Matrix FK from the camera matrices; this will
be used only to validate correspondences. Then we employ
the good matches to calculate the real Fundamental Matrix F.
Given i = 1, 2, 3, j = (i+1) mod 3 and k = (i+2) mod 3,
we define:

Xi =

(
PL(j, 1) PL(j, 2) PL(j, 3) PL(j, 4)
PL(k, 1) PL(k, 2) PL(k, 3) PL(k, 4)

)
(6)

Yi =

(
PR(j, 1) PR(j, 2) PR(j, 3) PR(j, 4)
PR(k, 1) PR(k, 2) PR(k, 3) PR(k, 4)

)
(7)

We now compute the matrix FK , as follow:

FK =

det([X1;Y1]) det([X2;Y1]) det([X3;Y1])
det([X1;Y2]) det([X2;Y2]) det([X3;Y2])
det([X1;Y3]) det([X2;Y3]) det([X3;Y3])


(8)

At this point we validate the correspondences, discarding
the matches where x′

T
FKx > 0.01. From the remaining

correspondences we run the normalized 8-points algorithm
[6] to compute the final Fundamental Matrix F, using a
RANSAC scheme for outliers rejection. At the end of this
process we obtained a Fundamental Matrix that describes the
epipolar geometry of the current eyes configuration.

3) Essential Matrix, Camera Geometry & Rectification:
at this point we aim at estimating the Essential Matrix E
[10], which relates right and left views considering calibrated
contexts, i.e. the camera intrinsic parameters are known.
Starting from the Fundamental Matrix, we compute:

E = KT
RFKL, (9)

where KR,KL are the 3 × 3 matrices of the intrinsic
parameters. At the same time, the Essential Matrix can be
expressed in terms of a rototranslation matrix between the
two camera views [6]:

E = R[t]x, (10)

where

[t]x =

 0 −tz ty
tz 0 −tx
−ty tx 0

 ; (11)

therefore, starting from the Essential Matrix we can finally
estimate the extrinsic parameters of the cameras. We fol-
low the classic procedure described in [6], retrieving four
rototranslation matrices and disambiguating them using the
chierality test. A further check is done considering the
current kinematics of the robot: if the model does not differ
too much from the retrieved matrices then the solution is
accepted, otherwise it is discarded. We finally obtain a couple
of camera matrices PL = KL[I|0] and PR = KR[R|t],
and we can perform the rectification process. We used the
Bouguet’s algorithm, which rotates the cameras so that they
share the same X axis.

4) Structure Estimation: after the rectification procedure,
we have reduced our current setting to a standard stereo
camera. We remind that this entire procedure is repeated
every time the robot moves its eyes. We are now ready to
estimate the 3D structure of the scene using the disparity
computation. In this work we used the procedure described
in [7]. Thus, assuming known the disparity d between the
left and right image for a given pixel (u, v), we can easily
reproject it in the 3D space: X

Y
Z

 =


(u− cx)b/d

(v − cy)b/d

bf/d

 , (12)



where b is the baseline of the two cameras (i.e. the norm
of the translation vector t), f the focal length and (cx, cy)

T

is the principal point of the stereo camera system. In Fig.
2,right we show an example of the obtained disparity maps.

Fig. 4. RGB image and disparity map with the expected (green dot) and the
real (red dot) end effector. The former position is retrieved directly using the
known kinematics and projecting the 3D point into the image plane while
the latter position is computed automatically by means of the depth map
allowing for fast and easy segmentation of the fingertip.

B. Eye-Hand Calibration

Provided with a perfect model describing how the vision
system gets coupled with the kinematics, any 3D location
of the end-effector can be flawlessly mapped in the camera
image planes with no mismatch. In practice, as shown in
Fig. 4, the expected position of the end-effector and the
real one differ by some unknown offsets. In our case this
shift could vary from 1 cm up to 6 cm, depending on the
eyes configuration and the 3D point position. We tackle
the calibration problem from a different perspective: instead
of looking at the frames A and B, we consider a set of
N points belonging to the two different reference systems:
(Xi

A,X
i
B) ∀i = 1, . . . N , with Xi

A,X
i
B ∈ R3. Given this

set of points, our goal is to learn the function f(XA) = XB .
The main advantages with respect to other approaches are
twofold: (1) when a large set of examples is provided, the
function can be learned accurately and it can generalize
to new positions in the 3D space; (2) we do not employ
any calibration pattern for retrieving those training data but
we rather rely on a fully automatic procedure. We consider

Fig. 5. Data generated for the hand-eye mapping. Red dots are 3D points
retrieved from the stereo vision system after the fingertip detection. Blue
dots are the end-effector positions detected via kinematics.

the 3D end-effector position in homogeneous coordinates
X

i

B ∈ R4 and we use the forward kinematics HB ∈ R4×4

to map it to X
i

R,B = HBX
i

B , which gives the coordinates
of the end-effector in the ROOT reference system (see Fig.
1). The detection of Xi

A is based on the stereo vision system

of the iCub. We use the depth map to segment out all the
background within a bounding box around the expected end-
effector position Xi

B . Then, considering the configuration of
the hand showed in Fig. 4, we can detect the fingertip by
retrieving the top-left point in the region of interest. This 2D
point is reprojected in 3D space using Eq. 12, whose 3D
projection is Xi

A. The homogeneous point X
i

A ∈ R4 is then
mapped to the ROOT frame X

i

R,A = HAX
i

A. Fig. 4 depicts
an example of the described procedure: the end-effector
point is reprojected in the image plane for visualization
purposes (green dot); in red we show the detected fingertip.
To automatically collect ground truth data, iCub moves its
end-effector along multiple ellipsoidal paths with different
centres, sizes and orientations in the 3D space. The data
acquisition procedure is very simple, reliable and requires 2
minutes for the full calibration. During the acquisition, the
robot actively tracks the end-effector expected point, in order
to explore different eyes positions. Examples of the acquired
data is depicted in Fig. 5: in blue we show the set of expected
end-effector positions XB , while in red the 3D vision points
XA transformed with respect to the root frame are drawn.
Given these two point clouds, our goal is to learn the offset
between them. To this end, we propose to use a fast linear
mapping H ∈ R4×4, such that XR,B = HXR,A. We can
solve the following minimization problem:

argmin
H

1

N

∑
i

‖Xi

R,B −HX
i

R,A‖2 (13)

s.t.H ∈ SE(3),

where SE(3) is the space of the admissible rototranslation
matrices. We use the Ipopt solver [26], a public domain
software package designed for large-scale nonlinear opti-
mization. At run time, given a new homogeneous point from
the vision system XA, we compute the point with respect
to the ROOT frame XR = HXR,A. In practice, we have to
explore the whole workspace of the robot and a single linear
transformation may not generalize as expected. Therefore,
we extend the model by introducing a mixture of transfor-
mations that we term experts, whose spatial competences can
be easily retrieved from the corresponding training sets. As
a result, any point XA is remapped to the ROOT reference
system using the linear combination XR =

∑K
i wiHiXR,A,

where each Hi is obtained by locally minimizing the Eq. 13.
The weights wi depend on the distance of the point XR,A

from the training space centroid ci ∈ R3, taking also into
account the covariance matrix Si ∈ R3×3. The parameters
ci,Si describe the spatial occupation of the 3D points used
to train the i-th expert in terms of the resulting minimum
ellipsoid computed as in [21]. The weights are assigned
through RBF functions computed with the Mahalanobis
distance and then normalized as follows:

wi =
exp(−(ci −XR,A)

TS−1i (ci −XR,A))∑K
j exp(−(cj −XR,A)TS

−1
j (cj −XR,A))

. (14)

Remarkably, we tested in our experiments how the mixture
of experts model runs fast, providing real-time performances,



and accurately, achieving with only 4 experts very low
reaching errors in the iCub work space.

Fig. 6. Testing error [m] with respect to the training size. Learning methods
require at least 150 points in order to reach the same accuracy of SE3. The
lower bound error is 1 cm for all the methods.

IV. EVALUATION

In this Section we evaluate the system with exhaustive
quantitative experiments and comparisons.

A. Linear Experts vs. Machine Learning Techniques

Given the availability of (theoretically) infinite ground-
truth data, also machine learning techniques seem to be
good candidates to learn such mapping. In this Section we
evaluate different methods to learn the offset between the
vision and the kinematics. We compare 4 techniques: the first
one is the mixture of linear transformations (SE3). We then
analyze the following machine learning algorithms: Gaussian
Processes (GP) [15], Regularized Least Squares (RLS) using
the GURLS implementation of [19], and Support Vector
Machine (SVM) [24].

During data-set acquisition, we let the iCub follow with
its end effector (i.e. the index fingertip) some predefined
ellipsoidal paths in the Cartesian space, which are sampled
with 100 points; overall, we collect more than 2000 points.
During the testing phase we generate new ellipsoidal paths.
Empirically, we found that 4 experts suffice to cope with the
iCub work space relevant for the envisaged tasks. In Fig.
5 we show examples of the end-effector positions acquired
through kinematics (blue dots) and through the vision system
(red dots). The hyper parameters of the learning methods
have been estimated using standard cross-validation. In the
first experiment we aim to evaluate the robustness of different
methods with respect to the number of training data. In Fig.
6 we show the error with respect to number of training
examples. Notably, SE3 reaches precisions up to 1 cm after
a few examples (around 50, i.e. half ellipse). All the other
methods require more examples, around 150, before reaching
the same accuracy.

In practice, the eye-hand calibration may be often per-
formed, since joints startup calibration entails mechanics
changes. As a consequence, a fast procedure (i.e. a method
that requires fewer training points) is preferred. In order to
assess how much a method can generalize over unknown
data given a relatively small number of training points, we

train on a single ellipsoid (121 points) and test on other
19. Results for both training and test set are showed in
Fig. 7. The initial error between vision and kinematics is
4 cm on the average. In this experiment, SE3 outperforms
all the method achieving 1.1 cm of error. The second well-
performing method is GURLS with 1.3 cm. Notably, on the
training data, all the learning methods obtain higher results
with respect to SE3 (around 0.2 cm of errors against 0.6
cm using SE3). This clearly shows that machine learning
methods overfit the data, therefore they will perform better
when the whole space is explored (i.e. infinite data).

Fig. 7. Training and Testing error [m] for all the methods trained using
only one ellipse and tested on other 19. SE3 turns to be the best candidate
as it requires fewer examples to achieve same accuracy.

Fig. 8. Tool use experiment: (A): The instruction to grasp the object is
given to the iCub, which reasons on which tool to use (B): reaches for the
appropriate tool. (C): reaches for the object with the tool. (D): pulls the
object towards itself for grasping. (1-2): disparity map and segmentation.

B. Reaching Performances

To evaluate the capability of the iCub to reach for 3D
points in real scenarios we consider the setup of Fig. 9, using
the Vicon Motion Capture System1. The Vicon is a state-of-
the-art infrared marker-tracking system that offers millimeter
resolution of 3D spatial displacements. A schematics of the
setup used is depicted in Fig. 9 (right): the iCub stands
in front of a table with a target object lying on top; we
accommodated one Vicon marker on the robot index fingertip
and a second marker on top of the target which is placed
over the table in the 4 different positions P0, P1, P2, P3 on
the xy plane. We also considered two different table heights

1Website: www.vicon.com

www.vicon.com


Fig. 9. Left: The Vicon system setup used to evaluate the reaching
performances. Right: A sketch depicting the relative positions of target
markers Pi with respect to the robot.

z0 and z1 (|z1 − z0|=10 cm) in order to better explore the
operational space, resulting in 8 points in total per session.
For each point, the iCub performs 5 reaching actions. The
goal of the experiment is to verify the precision as well
as the repeatability of such reaching. Table I reports the
results without the calibration (i.e. using 3D vision and
inverse kinematics [13] only), and with the proposed eye-
hand calibration procedure. For each modality we collect
the standard deviation σeff of the final 3D points reached by
the end-effector (to evaluate the movement repeatability); we
also collect the mean and the standard deviation of the norm
of the error e between the former attained 3D locations and
the corresponding target markers Pi (to give an estimation of
the movement precision). Importantly, results illustrate that
the pipeline composed of the cascade of stereo vision and
inverse kinematics do generate very reliable and repeatable
movements (as testified by very low values of σeff ) and that
the proposed eye-hand calibration is capable of improving
the overall reaching accuracy by significantly reducing the
error e of 4.2 cm on average. Finally, it is worth noting how
the mean errors recorded while using the calibration are in
accordance with the predictions of Section IV-A.

TABLE I
RESULTS OF THE REACHING EVALUATION USING THE VICON SYSTEM.

NO CALIBRATION CALIBRATION
σeff [cm] ‖e‖ [cm] σeff [cm] ‖e‖ [cm]

P0 0.27 4.29± 0.56 0.32 0.74± 0.39
P1 0.01 7.83± 0.05 0.16 1.69± 0.08
P2 0.33 6.84± 0.52 0.35 1.74± 0.15

90 HEIGHT 1 P3 0.49 5.89± 0.82 0.65 0.96± 0.39
P0 0.13 3.69± 0.68 0.11 0.70± 0.00
P1 0.51 5.79± 0.50 0.05 1.22± 0.07
P2 0.20 5.67± 0.20 0.16 0.93± 0.31

90 HEIGHT 2 P3 0.16 2.97± 0.02 0.40 1.38± 0.06

V. EXPERIMENTS

In order to qualitatively demonstrate that the proposed pro-
cedure actually improves how humanoids can tackle simple
and more complex tasks, we present two real applications
implemented on the iCub, which entail the coordination of
perception and motion capabilities.

A. Power Grasp & Tool Use

The first task on which we assessed our system is a power
grasp application. The procedure described in [5] is applied
on several objects. In this previous work, we needed to fix
an eye configuration, and then estimate empirically the offset
between vision and kinematics. In particular, we performed
a few grasps in fixed conditions, and then we manually set
the offset between the 3D point perceived by the stereo
vision and the one predicted by the kinematics, in order
to obtain reliable grasps. Clearly this procedure was not
automatic, and it had to be performed every time it was
necessary to change the robot’s eyes configuration. Here, we
first let the robot execute 20 grasps on 4 objects (the ones
showed in Fig. 2 , same used in [5]), and we evaluate the
goodness of our system counting the number of successful
grasps over the number of total grasps. First, we use the
3D points computed by the stereo vision system after the
calibration procedure (see Section III-A), without applying
the eye-hand coordination step, obtaining 23% of accuracy.
We then report our previous results [5] obtained by manually
setting the offset between vision and kinematics: 91.25%
of success rate. We finally let the robot perform the same
grasp actions using the procedure proposed in Section III-
B achieving the remarkable precision of 97.5%. Not only
the eye-hand calibration improves the overall results, but
in addition it does not require any manual offset among
different objects and positions in the space.

We then put to test our system in a second scenario that
extends our previous work on the use of tools for exploring
affordances [20]. The iCub was able to explore hand held
tools, learn how to use them and finally employ the learned
skill in order to accomplish his task. We placed the tools on
a rack within the reach of the iCub (see the setup in Fig. 8)
and used the proposed calibration procedure to successfully
reach and grasp the required tool. To demonstrate that the
system is robust and precise enough we performed 20 reach
and grasp actions on tools placed on the rack arranged in four
different orientations with respect to the gravity direction: 0,
−45 and 45 degrees obtaining 95%, 90%, 90% of successful
grasps respectively.

B. 3D Scene Reconstruction

The estimated depth map can be also exploited to recon-
struct the 3D space surrounding the robot, integrating data
that belong to different views of the environment into a
single 3D scene. This is a typical application also for mobile
robotics, in which 3D cameras or laser systems are com-
monly employed to perform simultaneous localization and
mapping tasks. In our specific case we attempt to evaluate
the quality of our depth data by reconstructing scenes, such
as the workspace in front of the robot. For our experiment
we used the CCNY Visual Odometry package that is publicly
available. The algorithm [3] works by tracking relevant
RGBD features between camera frames and aligning them
against a unique 3D model of the world, obtaining an
estimated camera pose. This pose is then used to expand
the model of the world, by inserting new landmarks for each



feature which is not associated to the model set. An example
of a 3D scene reconstructed using our robot’s cameras is
shown in Fig. 10. It is worth noting that the reconstruction
exhibits many non valid regions, which correspond to the
areas where the depth map algorithm [7] fails, usually
because of uniform color and lack of features. Nevertheless,
the overall performance is good and data acquired from
different views are successfully merged into a single coherent
spatial model.

Fig. 10. 3D scene reconstruction obtained by moving the iCub head.

VI. DISCUSSION

In this paper we tackled the problem of learning the vision-
kinematics mapping in humanoid robots. We showed the
importance of having a reliable coordination between the
vision system and end effector for high level applications.
We proposed a fully automated procedure for the eye-hand
calibration problem. The method is based on the stereo vision
system of the iCub robot, it takes into account the mechanics
inaccuracies of the robot, it works for non in-hand camera
setups and it does not require any supervision. Furthermore,
the procedure is very fast and it can be performed on the fly.
We also showed different applications which benefit from
the proposed method. Future work includes the evaluation
of different depth map algorithms; indeed we noticed that
the implementation of [7] available in OpenCV suffers from
illumination changes and it represents a bottleneck in terms
of speed and accuracy. Our aim is also to extend the method
to other applications such as navigation and localization in
unknown environments, 3D feature extraction and body pose
estimation.
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