

A CARTESIAN 6-DOF GAZE CONTROLLER FOR HUMANOID ROBOTS

Alessandro Roncone Ugo Pattacini Giorgio Metta Lorenzo Natale

THE TASK

- Control the Gaze of the iCub head
- It is a 6-DoF binocular system:
 - 3-DoF neck
 - 3-DoF eyes with antropomorphic arrangement

- Multiple applications: image stabilization, tracking, attention systems, ...
- HRI: human-like movements are effective in signaling non-verbal cues during cooperative tasks [Boucher et al. 2012]

THE TASK

- Target: control the 3D Fixation Point $oldsymbol{x}_{FP}$
- The control task is redundant!
- Additional behaviors:
 - Vestibulo-Ocular Reflex (VOR)
 - Gaze Stabilization
 - Saccadic Behavior

THE ARCHITECTURE

THE GAZE CONTROLLER

IMU

THE NECK SOLVER

Goal: point the forehead toward the desired

fixation point

$$egin{aligned} \cos(heta) &= rac{z_c(oldsymbol{q}_N) \cdot ig(O_c - \hat{oldsymbol{x}}_{FP}ig)}{ig\|O_c - \hat{oldsymbol{x}}_{FP}ig\|} \ oldsymbol{q}_N^* &= rg\min_{oldsymbol{q}_N \in \mathbb{R}^n} \left\|oldsymbol{q}_N^* - oldsymbol{q}_N
ight\|^2 \ ext{ s.t. } igg\{ \cos(heta) < -1 + \epsilon \ oldsymbol{q}_l < oldsymbol{q}_N < oldsymbol{q}_u \end{matrix}$$

THE EYES SOLVER

The inverse kinematics task at the eyes is not redundant and always invertible:

$$\dot{\boldsymbol{q}_E} = G \cdot J^{-1} \cdot \left[\hat{\boldsymbol{x}}_{FP} - K_{FP} (\boldsymbol{q}_E) \right]$$

Vestibulo-Ocular Reflex (VOR): it is possible to account for the counter-rotation required to compensate for head movements:

$$\dot{\boldsymbol{q}_E} = G \cdot J^{-1} \cdot \left[\hat{\boldsymbol{x}}_{FP} - K_{FP} (\boldsymbol{q}_E) \right] - \dot{\boldsymbol{q}}_c$$

THE CONTROL PROBLEM

- Two independent (albeit identical) controllers compute velocity profiles to command the neck and eyes motors
- They provide biologically-inspired minimum-jerk trajectories to replace the exponential profiles generated by the (eyes) IK solver

THE CONTROL PROBLEM

The minimum-jerk controller operates all the six head joints independently

$$\frac{\dot{q}_{N,E}}{q_{N,E}^* - q_{N,E}} = \frac{a/T_{N,E}}{s^2 + (c/T_{N,E}^3) \cdot s + b/T_{N,E}^2}$$

(NECK) GAZE STABILIZATION

The robot is able to counteract for external disturbances measured at the IMU while accomplishing the main gazing task.

SACCADIC BEHAVIOR

Saccadic behaviors are fast feedforward commands that exploit the faster dynamic of the eyes to quickly foveate on target.

TRACKING A 3D MOVING TARGET

The Gaze Controller is successfully able to track 3D circular trajectories with varying speeds and orientations

COMPARISON WITH HUMAN GAZE SHIFTS

- The faster dynamics of the eyes lets the robot foveate on target, and then counter-balance when the neck catches up (with VOR)
- Human-like gaze shifts are useful in signaling non verbal cues

SACCADIC BEHAVIOR

 $[3.3 \text{cm}, 30 \text{ms}] \rightarrow [1.8 \text{cm}, 30 \text{ms}]$

Saccades are able to successfully cope with abrupt changes in the target, and significant gaze shifts

GAZE STABILIZATION

External disturbances are compensated for by the neck stabilization system while accomplishing the main gazing task

CONCLUSIONS

Comprehensive architecture for the explicit control

of the fixation point of a generic binocular system

Flexible software interface that can be

implemented in different robots

Rich set of additional behaviors

the Vizzy robot [http://vislab.isr.ist.utl.pt/]

Software available at https://github.com/robotology/icub-main